2011-09-29

Migrate

Adempiere Migration Tool

Tool for Upgrading, Transferring, or Converting Databases

User Manual

Stefan Christians

GO

ADempiere

ADempiere

Migrate User Manual
Adempiere Migration Tool
by Stefan Christians

2011-09-29

This programis part of Adempiere ERP Bazaar
http://mwww.adempiere.org

Copyright © Sefan Christians
Copyright © Contributors

Thisprogramis free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESSFOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Contributors:
Sefan Christians

Sponsors:
K.K. ALicE

Adempiereis a registered trademark of Adempiere, Inc.

All other company or product names are mentioned for identification purposes only, and may be trademarks of
their respective owners.

Tool for Upgrading, Transferring, or Converting Databases

While tools such as migration scripts for upgrading or DDLUTILS for converting databases are suitable for
ADEMPIERE'S application developers to maintain the seed database, they are a bit challenging for the average user
to maintain their live database.

MiGRATE provides a graphical user interface for upgrading databases.

It can also be used for converting between database vendors (like OracLE and PosTGRESQL) or applications (like
ComPIERE and ADEMPIERE).

Migrate User Manual

Table of Contents

I I 1 oo [F ot A oo PSSP 1
What iS Data Migralion?ccccceeeeiesieieerie e eesiessee e ae e e e se e sseesneesesneesseeneesnes 1
L TS (] YRR 1
T o =SSR 3

TraNSFEr IMOOE ...ttt ne e 3
@07 =" [01/ oo [4
Putting it @l TOQEINENccveeeeciee e 4
010 =S DTS o) o 5
CONNECE t0 DALADAESESecveeieeieeiesiesie sttt sttt sbenae s 5
LOAD MELEDEALAccveiveiirieiiieiee sttt ene e 5
S 0 Tox 0= Y/ o = 1 o o O 5
D= ez 1Y, 1T (o) o S 7
(O11= 11 o S 7
ENfOrce CONSIIAINTSccveiuiiiiiieieies et 8
Close Database CONNECLIONSccoveiiiriresinireeieee et nee s 8

2. Marking CUSLOMIZALIONScecuieiieiieieeriesee s este e e e e e s teesee e e saeeneesseesseeneesreenseeneens 9
Registering Custom ENLity TYPES ...occvveeieeiecieseeriesee e eee e ee e se e nns 9
Mark Customizations in the Application DICONAIYccecveeeereeinriere e 11
Mark Customizations in the Change Logcccccveierieerierreie e 11

3. Migrating @ DAtADASEccccvieeiieiicieseere ettt sreer e e nreenns 15
(= 01 =10 o S 15

DISCONNECE @l USEN'S ...ttt 15
Create @ BaCKUPoceeeeieecee et 15
INStall NEW ADEMPIERE VEISION ...c.coiviiiiiiriieiieie ettt st b i 15
Import Reference DatabDasecccccvveieieeniene e 15
Verify PreCoNAItiONSccveiuieieriicie ettt sre s 16
Running the Migration TOO|cccceieiiiiicese e 16
The USer INTEITACE ..ot 17
Starting from the Command LinNecccevieieiceseesece e 25
oIS Y T (o) I IS 28
LAY g 11 0 S 28
EITOIS e e 29
Start the APPIICALION SEIVESoceeieeeee e 31

4. Compiling and EXTENAINGocveiieiieieceeie e ee st e e e neeneenne s 33

(00T o] [T g o TN\, 17Ny o =S 33
S0 (U= 1101 | S 33
Downloading and Compiling the Source Codecccoceveevereereeceseese e 33
Building and RUNNiNg MIGRATE 1N ECLIPSE ...ccvcveiiesieeieseesieeeesee e eeesneessesnnens 34

EXIENTING MIGRATE uviieieiiecieeiesteeie et e st e te s e st e e s e sseese e sseeteeneesseenseensenneenseeneesnes 35
SOUICE FIES ..ttt bbb 35
Adding Languages and LOCAIESccoeeeieeieeiiese et 36
Adding Database VendOrsScoveceieereeiesieesecsie e s e ee s esee e s 37
TO DO e nnne e 37

Migrate User Manual

List of Figures

1.1
1.2
1.3.
2.1.
2.2.
2.3.
24.
2.5.
2.6.
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
4.1.

Migration UNAEr COMPIEREcccveiueeeesieeieseesseesesseessessssseesseessessesssesssesseessessssssesssesssssses 2
Traditional Migration UNAEr ADEMPIEREccecueeuereesieeseeseesseessesseesseessesseessesssessessseessenns 3
New Migration under ADEMPIERE USING MIGRATE ..cccvveeevteenieeeesreeseeseesseesseseesseeseesneeses 3
ENILY TYPE MENU ..ottt esne e teennesneenneenne s 10
Registering an ENtity TYPEeooeeiecee ettt 10
SeleCting @n ENLILY TYPE c.uveiieiecee ettt ee st e e teenaesreesneenne e 11
WiNdOW CUSIOMIZEEIONoveeiriieiieiesie ettt sttt st 12
(@ 7= T3 oo 1V 1= o T S 12
Marking CUSLOMIZALIONScccveiuieieeieseerieete st te e re e s e ste e e sneesseeneenneennes 13
GrapiCal USEr INTEITACEvvceee ettt nnn 17
[TTo = o 1Y, oo [17
[o1 o 1SS 18
PAIGIMELENS ... e e s r e nn e ne e nre e e 20
COmMMANG BULTONSueiiiiiiiiiesiese ettt bbb 22
S22 11 PP 23
VIBW BUTONS ...ttt sttt bbbttt ettt e 24
ClOSE BULLONS ...ttt bbbttt bbbttt et et et sae s b nne s 25
Classpath Settings fOr ECLIPSEciiieiieieieerie e seesieste et ee e sae e sse e sseesneeneens 34

Vi

Migrate User Manual

List of Tables

3.1, WarNiNg MESSAgEScevueruierieeieeieesieesteeeesteesseeseesseessesseesseesessesssesssessesssesssessenssenssesseenes 28
3.2, ETTOI MESSAOESvveieiiiieieiiee ettt sttt ettt et et e e st e e bt e e s ne e e sbe e e sabeeesnneeennnee s 29
4.1, SOUICE FIES ..ttt bbbttt ettt sb et be s 35

Vil

viii

Migrate User Manual

1

Introduction
What is Data Migration?

Welcome to MIGRATE, ADEMPIERE'S universal migration tool for upgrading, transferring, and
converting databases.

“Migrating” means moving from one place to another. Specifically for databases, “migrating
data’ can have either of the following meanings:

a. Transferring

The process of transferring data between storage types or computer systems. Like copying
datafrom hard disk to floppies, or from one server to another. Thisis commonly referred to
as Copying, Transferring, Moving, or Replicating.

b. Converting

The process of converting data from one format or system to another. For example, if your
company changesitsdatabase system from aproprietary vendor to an open source alternative,
the data needs to be manipulated to fit into the new database's format. This is commonly
referred to as Converting or Trandating.

c. Upgrading

The process of upgrading adatabase's structure to enable new or different functionality. New-
er software versions may have introduced new functionality or bug fixeswhich require adif-
ferent database structure than was availablein previousversions. | n such cases, your database
needs to be adjusted to the new structure so that it can be correctly utilized by the new soft-
ware version. Thisis commonly referred to as version migration or upgrading.

MiGRATE can do all three types of migration, therefore we call it a Universal Migration Tool.
Y ou can use MIGRATE for following tasks:

* converting your database from ORACLE t0 POSTGRESQL
* converting your database for use by ComPIERE t0 use by ADEMPIERE
 upgrading your database for use by a different ADEMPIERE version

History

Before AbempPiERE forked from the ComPIERE project, version migration was available to Com-
PIERE users for afee. The user had to load the newest reference database, which was distribut-

History

ed with the CompIERE software package, and then start a closed-source proprietary migration
program, which would check the license validity and download SQL scripts from COMPIERE'S
web server to correctly upgrade the live database by copying the reference database's structure.
This was done through a graphical user interface which was straight-forward and worked very
well, but it had one disadvantage (apart from the obvious cost factor and being closed-source):
it was not very flexible.

This isinherent in the nature of scripts — they run a number of commands in sequence to get
from origin A to target B. It is not possible to get to atarget C or D. For CoMPIERE it meant
that it was only possible to upgrade from older versions to the newest version, not to aversion
in between or downgrade to alower version. You had to load the newest reference database to
work with the newest scripts. As a consequence, you were forced to do a full upgrade every
time, introducing many bugs and trial features, which was not ideal for business environments.

license
check SOL scripts

Migratiorl

Tool l
IL__ _'__'_':" ‘ ‘ l’;___ T
_ —
Reference Live
Database Database

Figure 1.1. CompPIERE'S proprietary upgrade service

Since COMPIERE'S version migration was proprietary, it was not included in the code base from
which Apempiere forked out, and a new solution had to be found quickly to be able to do any
version migration at all. Karsten Thiemann programmed anice little tool called DBDIFFERENCE,
which would generate SQL -scripts based on the structural differences between thereferenceand
target database. The SQL -scriptswould then be manually applied to upgrade the target database.

Astheuser isactively involved in SQL-script generation and can also review and edit the scripts
before they are applied to the target database, there is of course much more flexibility and con-
trol than was possible with CompiERE'S solution. But for the casual database user the task was
daunting, and real world implementations with numerous extensions and customizations mess-
ing up DBDIFFERENCE's logic required heavy interventions which were not alwaysfeasible. DB-
DirFrereNcE also relied mainly on the reference database's design, without giving much thought
to the contents of the Application Dictionary, astorage of meta-dataand rules defining the data's
use by ADEMPIERE Where a'so most customizations are defined.

Once your data reflected the structure required by an ADEMPIERE release, things got easier be-
cause you could use scripts pre-generated by the AbempiERE team (if you took good care of your
customizations), but getting to that point was a major task.

Functionality

SOL scriptd
Migration
Tool
A
_ [
I |]
—_— L
Reference Live
Database Database

Figure 1.2. ADEMPIERE'S script-based solution required massive user intervention

To make things worse, with AbemPIERE You had the choice of using POSTGRESQL, a free and
open-source database system. So if you previously used a proprietary database system, you
had to do a conversion migration to translate your data to POSTGRESQL . Another set of tools (
DDLUTILS) was used for this purpose, also requiring heavy user intervention.

So although the migration tools introduced by ADEmPIERE were very flexible and in many cas-
es proven to be workable, they lacked the ease of use old hands were accustomed to from
CoMmPIERE'S version migration tool. Being very suitable for ADEMPIERE'S application developers
to maintain the seed database, they are a bit challenging for the average ADEMPIERE USer.

MIGRATE solves these disadvantages by providing a graphical user interface which makes it
easy to use for the uninitiated, and giving up on the script concept entirely by using algorithms
instead. Also MIGRATE uses a reference database against which the live database is checked,
but the algorithms aso make heavy use of the meta-data available in ADEMPIERE'S Application
Dictionary and thus are also aware of any customizations and extensions. Any changes to the
live database are made directly, no scripts are generated or need to be applied.

Migration

Tool
Reference Live
Database Database

Figure 1.3. MiGraTE simplifies automated migration using algorithms instead of scripts

Functionality

Transfer Mode

MIGRATE reads the structure and data from a source database and writesit into atarget database.
Initsmost simpleform, this correspondsto what we previously described as Transfer Migration.

Upgrade Mode

Y ou can therefore use migrate to transfer or copy a database from server A to server B, though
it is not recommendable. This kind of migration is very straight-forward and does not require
any overhead logic, and the tools provided by your database vendor (exp and imp for ORACLE,
pg_dump and pg_restore for POSTGRESQL) are much more suitable and extremely efficient.
MIGRATE is much too slow and bulky for this task.

However, MIGRATE comes in handy if the source and target are for different database vendors,
for example if you want to transfer your data from ORACLE to POSTGRESQL. Thisis what we
previously described as Conversion Migration.

In thiscase, MIGRATE reads content from the source database, translatesit to aformat understood
by the target database, and then writes it to the target.

Note that although MIGRATE attemptsto correctly translate content to the target's format, thisis
not always possible. Converting data types and indexes is relatively safe, converting views is
abit more difficult, and translating functions and procedural languages, such as from pL/sqQL to
PL/PGSQL, is virtually impossible if you do not program a full-fledged command interpreter.
Consequently, the user will be given warning messages to check on views that have been trans-
lated, but the tranglation of functionsis currently not implemented at all.

In both above cases, dataisread from the source and anew target is created, or an existing target
isoverwritten, to contain the source's data. The only differenceiswhether or not the source and
target vendors are different. In MIGRATE, thiskind of migration is called “ Transfer Mode”.

Upgrade Mode

Things get more interesting if the target does not get overwritten, but if source data is merged
into existing target data: The table structure etc. of your live datain the target table is modified
to reflect the structure provided as reference from the source table. Data records missing in the
target will be added from the source. Views and Functions defined in the target will be replaced
by those defined in the source. So if anew ADEMPIERE version required new tables or views or
functions, that functionality would be copied to your live data from the source database. We
therefore call thiskind of migration “Upgrade Mode”, and the source is the reference database
and the target is your live database.

Thisversion migration is what will most often be used.

Note that version migration only refers to ADEMPIERE versions, not versions of the database en-
gine. Y our database vendor will provide you toolsto upgrade the database version, if necessary.
Normally this is also achieved very efficiently by exporting (or dumping) data, installing the
new database version, and then importing (or restoring) from the dump file.

Putting it all Together

Say you are currently running CompPIERE on an ORACLE database, and you want to change over
to ADEMPIERE 0n a POSTGRESQL database. Y ou would do this migration in two steps (each step
will take approximately 3-5 hours, depending on the size of your live database):

First you would transfer your data from ORACLE to POSTGRESQL. MIGRATE will take care that
all datatypes are correctly translated and move the data. All tables, indexes, sequences, foreign

Process Description

keys etc. will be applied in the target database. An attempt will be made to translate views.
Functions will be commented out (so that you can review the original code) and replaced with
compilable stubs.

This trandation is intended as a one-way step. If you try to trandate back and forth between
database vendors, you will eventually end up with gibberish.

As second step, you would load the reference database and run a version migration. Now the
views and functions will be replaced by those defined in the reference database. So only your
custom views need to be checked and custom functions need to be translated manually.

When done, you are ready to use ADEMPIERE running on POSTGRESQL.. From now on, you will
only require version migrations each time you upgrade Apempierg, and they will run signifi-
cantly faster.

Process Description

MiGRATE performs the following steps to run amigration:

Connect to Databases

MiIGRATE uses JDBC to connect to the source and target databases.

If conducting atransfer migration, any existing data in the target database is erased.

Load Meta-Data

Asafirst step, some tests are made to detect and correct buggy behavior by some JDBC drivers.

M eta-data on the database's structure (tables, indexes, views, functions, sequences, foreign keys,
etc.) isloaded.

The Application Dictionary isaccessed to gather information on customizations, system clients,
and languages used.

Structural Migration

To get rid of overhead, MIGRATE first of all removes all kinds of database objects which are not
tables from the target database:

 check constraints
* unique constraints
» foreign keys

e views

* operators

* triggers

» functions

Structural Migration

e primary keys'
« indexest

With the database reduced to this state, MIGRATE can pretty much do whatever it wants without
running into constraint issues or being slowed down for integrity checks.

Then temporary tables are truncated to reduce the amount of data that needs to be migrated and
thus increase performance:

» Datafrom temporary tables(T_...) isremoved

* Records from Import tables (1_...) which have aready been imported are removed
* Records from the TEST table (Test) are removed

» Processes and Errors are removed (AD_PInstance, AD_Find, AD_Etrror)

» Changes which are not customizations are removed (AD_Changel. og)

» Sessions older than aweek are removed (AD_Session)

» Notes which have been processed are removed (AD_Note)

» Log entries older than aweek are removed (...Log)

The GardenWorld demonstration client is dropped, and all system records which are not refer-
enced by real clients are purged.

Any sequencesdefined in thetarget are synchronized with the reference database, and sequences
which are not yet defined are added.

Finally, the main structural migration task of synchronizing the target's table structure starts:

» Non-customized tables are dropped from the target if they do not exist in the reference
database
» Tablesexisting only in the reference database are added to the target
» Tables existing in both the target and the reference database are synchronized:
» Target tables are renamed to have the same name as their counterparts in the reference
database?
» Non-customized columns are dropped from the target if they do not exist in the reference
database
» Columns existing only in the reference database are added to the target
» Columnsexisting in both the target and the reference database are synchronized so that the
target column has the same properties as the column in the reference database:
¢ column name
» datatypeand size
* default values
 nullable constraint

After table synchronization, any non-customized sequences are dropped from the target if they
do not exist in the reference database.

Database objects are recreated — all objects existing in the reference database are created in the
target, and those target objects which are customizations are re-created:

ror performance reasons, primary keys and indexes are actually dropped at a later stage, and also temporary indexes are created and later
dropped again during the migration process. These performance enhancements do not affect the functionality of the actual migration process
and are omitted in this description for simplicity's sake.

This feature is not implemented yet.

Data Migration

» functions

* triggers

* operators

* Views

o indexes®

« primary keys®

Data Migration

Data records are transferred from the reference database to the target:

« if the record does not yet exist in the target, it is added.
* if therecord aready existsin the target, the target record is updated to contain the same data
in all columns as the reference database.

New parent tables are populated4 (only for upgrade migrations). If new tables are added to the
target which use previously existing independent tables as child tables, records must be added
to the parent table to reflect already existing datain the child tables.

Parent links are preserved (only for upgrade migrations). If a target table did not contain a
column which is used as part of aforeign key constraint in the reference database, that column
will have been added with a default value which does not reference any parent record. The
correct parent must be found and the default value replaced with alink to the parent record.

Orphaned data is removed (only for upgrade migrations). Records who's parent records have
been purged during migration are orphans which are no longer required and must be del eted.

Check constraints are enforced (only for upgrade migrations). Records containing values which
would violate a check constraint are modified to comply with the constraint.

Cleanup

Cleanup operations are performed only for upgrade migrations:

Customizations are re-applied. Users may modify windows and processes in ADEMPIERE, but
those modifications would be overwritten and reset by the migration process. Modifications
which should be preserved can be marked as customization in the change log, and they will
be re-applied.

Sequence counters are checked to ensure that the next number islarger than any number already
used in the database. Missing sequence counters are added (Sequence counters defined in the
application dictionary as well as native database sequence counters).

Missing trandations are added. If translation records are required but do not exist yet, they are
added with the original text from the main record.

Terminology is synchronized:

SFor performance reasons, indexes and primary keys are actually recreated at alater stage after data migration.
“This feature is not implemented yet.

Enforce Constraints

* New elements are created in the application dictionary for any columns or parameters which
have no base element defined yet.

» unused elements are deleted

« consistent terminology is deployed throughout the application dictionary

Trees are re-organized so that customized nodes are inserted back into their original locations.
Security settings are verified and role access records updated or added.

Version information stored in the application dictionary is updated.

Enforce Constraints

Constraints are recreated — all constraints existing in the reference database are created in the
target, and those target constraints which are customizations are re-created:

» foreign keys

 check constraints
* unique constraints

Close Database Connections

The source connection is closed and, if appropriate, the reference database is dropped.

Any remaining changes are committed to the target and the target connection is closed. If re-
quested, the live database will be optimized.

Migrate User Manual

Marking Customizations

Customizations are preserved through migrations. Entities which are not recognized as cus-
tomizations will be dropped or overwritten from the reference database.

MIGRATE recognizes four different levels of customization:

CUSTOVPREFI XED
An entity is named with a special prefix which identifiesit as a customization. Prefixes are
stored in the Application Dictionary.

CUSTOVVARKED
An entity is marked as customization in the Application Dictionary.

CUSTOM MPLI ED
An entity itself is not customized, but it contains customized components.

CUSTOVNONE
An entity is not customized.

The only way to determine the customization level is by consulting the Application Dictionary,
which means you must have informed the Application Dictionary about your customizations
before you start MIGRATE.

Registering Custom Entity Types

Y ou can register four-letter entity types to identify your customizations. These four letters can
also be used as prefix to name database objects which are not maintained by the application
dictionary.

For example, if you decide to identify your customizations by entity type QRST, then you can
create a custom index and name it QRST_M/| ndexName. Because QRST is registered as custom
entity type in the Application Dictionary, MIGRATE understands that QRST_MI ndexNane is a
custom index and will preserve it.!

Itisgood practiceto also namethose objectswhich aremaintained by the Application Dictionary
using your custom prefix, like QRST_MyTabl eNanme and QRST_My Col unmName. This makes the
customizations also easily recognizable by human database administrators.

1Excepti on: If the same four letters are also registered as entity type in the reference database, they will not be considered as customization
markers. The reasoning behind thisisthat if you use a customized reference database, those customizations contained in the reference database
should & so be maintained and controlled by the reference database and not protected by MIGRATE.

Registering Custom Entity Types

Of course you can also use different entity types for different topics, like QrS1 for security

related customizations, QRS2 for accounting related customizations, etc.

Toregister your custom entity type, login asSyst emand open thewindow Appl i cati on Di c-

tionary —» Entity Type.

Create a new record, enter four letters as your new entity type, and give it a short name and

O Ssystem@sSystem.* [KkaOfcTrm0O0L {localhost-adempiere-ac - + %

File Wiew Tools Window Help

= Menu ' [workflow Activities: 0| ™3 Workflow
= &Menu
E System Admin
== Application Dictionary

-\T= Search Definition

- T= Element

-

~T= Table and Column
7= Field Group

- T= Window, Tab & Field
< T=| Info Window I
7= Workbench

= Form

-[™ Desktop

7= Reference

- T= Validation Rules
7= Model Validator

o T= Message
7= Repaort View i
Expand Tree Lookup
= Motice: 0 @Request:ﬂ 134 ME - 92%

Entity Type

Figure2.1. SelectEntity Type fromthe Application Dictionary menu

adescription.

i@ Entity Type My own entity type System@System.* [KkaOfcTrm00l{localhost-adempiere-adempiere} - '+ '%
Eile Edit Miew Go Tools Window Help

9 @ipExE Qi @oter T¢292 FRAESE A" wA ©

Entity

Type Client System Organization *
System
Madifin Entity Type QRST
Name My own entity type
Description |Customizations and Extensions by me
Comment/Help
v Active
Version
ModelPackage
Inserted +*11/13

Figure 2.2. Register your custom entity type in the Application Dictionary

10

Mark Customizationsin the Application Dictionary

Mark Customizations in the Applica-
tion Dictionary

Y ou can how use your new entity type to mark your customizations in the Application Dictio-
nary.

For example, if you add a new column to atable, you can define it as being of your new entity
type:

Table and Column System@System.* [KkaOfcTrm001{localhost-adempiere-adempiere}]

File Edit Wiew Go Tools Window Help

- e oD fo— 1 & E [|
) @UPExE SQAIP= 9d e F249 2 FRESE A" iR ©
Table -
Column Key column Parent link column
Used Mandatory v Updatable
in Field
Table Mot Encrypted Always Updateable
Script Validator
Read Only Logic
Mandatory Logic
ldentifier N

Callout
Selection Column
Translated

< Entity Type My own entity type| - >

v AllowLogging Synchronize Column

-

Mavigate or Update record +769/71

Figure 2.3. Sdlect your custom entity type for newly created objects

Apart from your own entity types, you can of course also mark your customizations with one
of the predefined types User mai nt ai ned, Appl i cati ons, Ot her Customi zati ons, Ext en-
si ons, Or & her Extensions.

Do not use Adenpi ere or Di cti onary, which mark your changes as system-maintained and
they will be dropped during the next version migration.

Mark Customizations in the Change
Log

In some cases it is not possible to identify your changes with a custom entity type.

For example, if you wanted to change the Business Partner window so that the organization field
is not displayed next to the client field but below it in the next row. Logged in as Syst em you

would make the changesin thewindow Appl i cati on Di ctionary — W ndow, Tab & Fi el d.
Navigate to the Or gani zat i on field, and deselect Sane Li ne so that the field gets displayed
in the next row.

11

Mark Customizationsin the Change Log

‘Window, Tab & Field Organization System@System.* [KkaOfcTrm001 {localhost-adempiere-adempiere}]

File Edit Miew Go Tools Window Help
] ™~ O Ed L& 0
9 @CBExE SQI T E O e T4 92 DEHEAS AN
Window
Client System Organization ™
Access
Tab B s Part _B Part
Tab
Name Organization
Field
Sequence Description Ore ional entity within client
Field
Comment t/Help |An organization is a unit of your client or legal entity - examples are store, department. You can share data between organizations.
W Active
Included Tab. -
Column AD_Org_ID_Organization - Entity Type Dictionary
Field Croup - v Centrally maintained
v Displayed k Read Only
Display Logic
Digplay Length 14 @ Encrypted
Sequence 20(@
Record Sort No - Opscure -
Heading only Field Only
Reference Overwrite -
Mandatery Overwrite -
Default Logic
Mavigate or Update record "3/34

Figure 2.4. Tweaking window appearance

But as you can see, the entity type for thisfield isalready Di ct i onary, and you can not apply
your custom entity type.

To still protect your change from being undone during the next version migration, you can mark
it as customization in the change log. For security reasons, ADEMPIERE keeps a log of changes

done to the system. The log can be accessed from the window System Adnin — Gener al
Rul es — Security — Change Audit.

O Ssystem@System.* [KkaOfcTrm00L {localhost-adempiere-ac - + %

File Wiew Tools Window Help

= Menu ' 5] Waorkflow Activities: 0 '} Workflow

[= &Menu

2= System Admin

== General Rules

-3 System Rules

B[Security

T User

-!T= My Profile

{3 Reset Password
-+\7=| Role

{§} Role Access Update
{§} Copy Role

7= Role Data Access
-\T=| Aeeess Audit
-\T=| Session Audit

4

~\T=| Process Audit

™ |[Change Audit

-\T=| Archive Viewer
B3 Server -
Expand Tree Lookup change

[Motice: 0 @Request:ﬂ 178 ME - 91%

Change Audit

Figure 2.5. Select Change Audit fromthe Security menu

12

Mark Customizationsin the Change Log

Find the change you want to keep permanently and mark it is customization:

Change Audit System@System.* [KkaOfcTrmo001{localhost-adempiere-adempiere}]

File Edit Wiew GCo Tools Window Help

S OEPExE QI = Bhes» T2 2 TEELHSE A0 O

Change \
Audit Client System Organization |*

Session 1000002 _KkaOfcTrm001

Transaction POSave_2d56903c-cl13-4cl16-9505-fa3debEb261c Change Log 1000003
Updated Jul 15, 2010 6:23:10 AM JST Updated By |System
Table AD_Field_Field [Record ID

Column IsSameline_Same Line

¥ Active ¥

Event Change Log Update -
Old Value true
NewValue false
Description

Un-Do Changes Re-Do Changes

*1/4

Figure 2.6. Marking changes as customization in the Change Log

MiGRATE will preserve changes marked as customization in such way.

14

Migrate User Manual

3

Migrating a Database

Preperation

Disconnect all Users

The target database should be up and running.

No users should be logged in. Make sure all users are disconnected from the target and source
database.

That includes the ADEMPIERE server itself: Shut down the application server.

Create a Backup

Y ou must have a backup of your live data before starting the migration process.

Remember the disclaimer at the beginning of thisdocument: This program isdistributed without
warranty of fitnessfor aparticular purpose. It may migrate your data, or it may completely mess
up your database.

The easiest way to quickly create a backup is with /RUN_DBExport.sh (or
RUN_DBExport.bat) intheut i | s directory.

That script will create a file ExpDat . dnp in the dat a directory, which can be easily restored
using /RUN_DBRestore.sh (or RUN_DBRestore.bat), if necessary.

Install new ADEMPIERE version

If you want to do an upgrade migration, download the ADEMPIERE Version you want to upgrade
to and install it.

Then execute ./RUN_setup.sh (or RUN_setup.bat) in $ADEMPI ERE_HOVE to configure ADEM-
PIERE. The settings saved are also used by MIGRATE.

Import Reference Database

If you want to do an upgrade migration, install the reference database:

15

Verify Preconditions

Execute /RUN_ImportReference.sh (or RUN_ImportReference.bat) intheuti I s directory.

If you want to do atransfer migration, make sure the source database is up and running.

Verify Preconditions

Make sure that

* nousersareloggedin

 the ADEMPIERE application server is shut down

* you have a backup

« thereference database isimported (for upgrade migrations)
» the source or reference database is up and running

* thetarget database is up and running

Running the Migration Tool

Once al preparations have been done and verified, you can start MIGRATE by executing ./
RUN_Migrate.sh (or RUN_Migrate.bat) fromtheuti | s directory.

Thiswill start the migration tool and display the interactive graphical user interface.

When MIGRATE is started, it will read environment variables for setting parameters and options.
Since the RUN_M igrate script loads ADEMPIERE'S environment before calling MIGRATE, it ef-
fectively means that ADEMPIERE'S settings will also be used by MIGRATE. Any settings not de-
fined by environment variables will be supplemented with sensible values.

If $ADEMPI ERE_HOVE is defined, MiIGrRAaTE looks for a configuration file called
m gration. config inthe $ADEMPI ERE_HOVE/ ut i | s directory, otherwise it will look for the
configuration file in the current directory. If the file exists, configuration settings will be read
from that configuration file, and any settings loaded from the environment will be overwritten.
Once amigration was run, MIGRATE saves its settings to that configuration file, so next time it
is started, your last parameters and options will be used again.

Any command line arguments passed to MIGRATE will override the settings loaded from the
configuration file or from the environment so that command line arguments always take prece-
dence.

7o run in text mode and/or suppress console output, the keywords t ext or si | ent can be given to the RUN_Migrate script as command
line arguments.

16

The User Interface

The User Interface

Adempiere Migration Tool

File Help
Parameters Migration Mode
Source Target ® upgrade ' transfer
(reference) (ive data)
version 3543 (2009-09-15) 261 (2007-04-27) Options
\rendur||mslgresql |v|||msl.gresq| |V| log level |atlinns |v‘
host [localhost | localhost | [7] attempt translations
port 5432 5432
. | | | preserve table IDs
user [referance | [adempiare |
- [] drop source
password [reference | [adempiere |
S B [] aptimize database
system password
database |reference |v | |adem|liere |v|

driver jdbc:postgresglreference jdbc postgresgladempiere

tatalng|referente |v||adem|liere |v|

schema|reference |v | |adem|)iere |v|

| P reser || B reser | & start Migration

Status
step
action

detail

view trace H view warnings || view errors ‘ ‘ 3¢ cancal ||] Close ‘

Figure 3.1. MiGRATE's interactive Graphical User Interface

Oncethe user interface is displayed, you need to select the migration mode, select some options
to be used by the migration process, and set the database connection parameters.

Migration Mode

Adempiere Migration Tool

File Help
Parameters Migration Mode
Source Target @ upgrade transfer
(reference) (Jive data)
version 3543 (2009-09-15) 261 (2007-04-27) Options
\rendur||mslgresql |v|||msl.gresq| |V| log level |atlinns |v‘
host [localhost | localhost | [7] attempt translations
port 5432 5432
: | | | preserve table IDs
user [referance | [adempiare |
= [] drop source
password |reference | [adempiere |
ST TR [] aptimize database
system password
database |reference |v | |adem|liere |v|

driver jdbc:postgresglireference jdbc postgresgladempiere

catalog|reference |v||adem|)iere |v|

schema|reference |v | |adem|)iere |v|

| P reser || B reser | & start Migration

Status
step
action

detail

view trace H view warnings || view errors ‘ ‘ 3¢ cancal ||] Close ‘

Figure 3.2. Migration Mode Settings

Select the mode in which to run the migration process.

17

The User Interface

Two different modes of migration can be performed:

upgr ade
Upgrade target to newest version as found in source.

This mode can also be used to convert from other applications to ADEMPIERE.

transfer
Copy source to target.

This mode can also be used to convert from other databases to POSTGRESQL .

The default isto run an upgrade migration, but if different vendors are used as source and target
database (see Parameters below), only atransfer migration can be performed.

Options

-] Adempiere Migration Tool -+ 'X
File Help
Parameters Migration Mode
Source Target ® upgrade) transfer
(reference) (live data)
version 354a (2009-09-15) 261 (2007-04-27) Options
vem:lor|poslgresql |v|||)ustgresq| ‘v| log level ‘actions |v|
host [localhost | hocaimost | [] attempt translations
port (5432 5432
C | | | || preserve table IDs
user |reference | [adempiere |
- [| drop source
password |reference | [adempiere |
system user [] optimize database
system password
database ||'eferente |v||adem|1iere ‘v|
driver jdbc.postgresglreference jdbcpostgresgl.adempiere
catalog |referem:e |v||adem|)iere ‘v|
schema|referem:e |v||adem|)iere ‘v|
| B reset || P reset | & Start Migration
Status
step
action
detail
view trace | view warnings || view errors | | wgancel H] Close |

Figure 3.3. Options

Several options can be set to control migration behavior. Which options are available depends
on the migration mode.

| og | evel
MIGRATE creates three |og files containing results of the migration process:

e nmigration_tinestanp. error.|og
contains any errors encountered during migration which must be fixed.

* mgration_tinestanp.warni ng. | og

18

The User Interface

contains hints for the database administrator of what has to be checked or might need to
be done manually after migration has finished.

* mgration_tinmestanp.trace. | og
contains the output messages of what steps and actions MIGRATE has performed.

Thelog level option setsthethreshold for messagesto berecorded in thetracelog. M essages
with alower priority will not be logged.

Availablelog levelsin order of descending priority are:
* no | ogging

e errors only

* post-migration tasks (warnings)

* mgration steps

* actions

e details

¢ SQL update queries

e SQL read queries

e everything

The default log level isact i ons.

Note that levels of det ai | s or lower can create huge trace files. Be sure to have enough
disk space available.

attenpt translations
Thisoption isonly available in transfer mode.

When converting from one database to another, views and functions need to be trandlated.

If selected, MIGRATE will attempt to trandlate views and functions, otherwise they will be
replaced with a compilable stub.

(Note that currently only translation of viewsisimplemented).
Thedefault isyes.

preserve table | Ds
This option isonly available in upgrade mode.

When running an upgrade, al system information is dropped. Table IDs therefore restart
with the highest used sequence number avail able after migration. It may be beneficial, how-
ever, to remember higher 1D numbers used before migration to ensure consistency over dif-
ferent versions.

If selected, table ID numbers are preserved through migration, otherwise MIGRATE restarts
counting after migration

19

The User Interface

The default isyes.

drop source

This option isonly available in upgrade mode.

When done with upgrading, the source database is no longer required and may be dropped
to clear space. However, the database administrator may wish not to drop it for reference
pUrposes.

If selected, the source is dropped after a successful upgrade, otherwise it is kept remaining
in the database after migration.

(Note that the source will only be dropped if no errors occurred during migration).

The default isno.

optim ze dat abase

After migration, the database can be automatically optimized. Most databases nowadays
have scheduled processes which regularly run optimization tasks, so it may not be necessary
to explicitly run them here. Examplesfor optimization tasks are space all ocation or gathering
of statistics, but what is actually performed depends on which kind of database is running.

If selected, the target database is optimized after migration, otherwise it is left to the
database's automatic scheduler.

The default isno.
-] Adempiere Migration Tool -+ 'X
File Help
SParameters Migration Mode
Source Target @ upgrade ' transfer
(reference) (live data)
version 354a (2009-09-15) 261 (2007-04-27) Options
vendor||wslg|esql |v|||)ustg|'esq| ‘v| log level ‘actions |v|
host [localhost | [localhost |
port[5432 | 5432 | [v] preserve table IDs
user |reference | [adempiere |
: [| drop source
password |reference | [adempiere |
system user [] optimize database
system password
database ||'efe|'ence |v||adem|)iere ‘v|
driver jdbc.postgresglreference jdbcpostgresgl.adempiere
catalog ||'efe|'em:e |v||adem|)iere ‘v|
schema|reference |v||adem|)iere ‘v|
[%ex | %ws

Status
step
action

detail

| 38 cancel H il Close |

Figure 3.4. Connection Parameters

Parameters are used to define the connections to the source and target databases.

20

The User Interface

In upgrade mode, the source is the reference against which the target's structure is updated, and
live datain the target remains intact.

In transfer mode, the source is copied to the target, and all live datain the target is overwritten.

Two identical sets of parameters must be defined, one for the source connection and one for
the target connection.

ver sion
Thisfield is read-only and displays the ADEmMPIERE version number found in the database.

If no version number is displayed, it means that either no connection to the database could
be established, or the database contains no ADEMPIERE version information (which means
it isnot an ADEMPIERE database).

vendor
The vendor (or product) of the database. Supported vendors currently are:
* ORACLE
* POSTGRESQL

The default ispost gresql .

host
The name or |P-address of the server on which the database is running.

The default is| ocal host .

por t
The port on which the database is listening.

Common port numbers are 5432 for POSTGRESQL or 1521 for ORACLE.
The default is5432.

user
The normal database user aswhich to login.

The default isr ef er ence for source and adenpi er e for target.

passwor d
The normal database user's password.

The default isadenpi er e for both source and target.

system user
Some databases require a system user for certain operati ons’. Thisisthe name of the system
user aswhichtologin.

The default ispost gres.

’Thesyst em user and syst em passwor d fields are not used if the selected database does not requirelog in by a system user for migration.

21

The User Interface

syst em password
The system user's password?.

The default ispost gres.

dat abase
The name of the database to use.

The default isr ef er ence for source and adenpi er e for target.

driver
Thisfield is read-only and displays the URL which will be used by MIGRATE to connect to
the database. The driver and format used depend on the database vendor.

cat al og
The catalog to use.

The usage and meaning of catalogs varies according to database vendor. If none is given,
MIGRATE will try to find a sensible catal og.

schema
The schemato use.

The usage and meaning of schemas varies according to database vendor. If none is given,
MiGrATE will try to find a sensible schema.

reset
Pressing this button resets the parameters to their original settings.

Command Buttons

[~} Adempiere Migration Tool - * X
File Help
Parameters Migration Mode
Source Target ® upgrade ' transfer
(reference) (live data)
version 354a (2009-09-15) 261 (2007-04-27) Options
\rendur||luslgresql |v|||luslgresql ‘V| log level ‘aninns |v|
hest [localnost | localhost || | @ attempt transiations
port (5432 5432
: | | | [v] preserve table IDs
user [refarance | [aempiere |
- []drop source
password [reference | [adempiere |

system user DQDIII’I’IIZE database

system password

database ||'efe|'en|:e |v||adem|)iere ‘v|

driver jdbc:postgresql:reference jdbc:postgresgl adempiere

catalog |referente |v | |adem|1iere ‘v|
schema |referem:e |v||a|:|em|)iere ‘v|
| B reset || T reset | ¥ Start Migration
Status
step
action
derail
view trace | view warnings || VIEW errors | | Xgancel H ﬂ Close |

Figure 3.5. Command Buttons

22

The User Interface

Start Mgration
Start the migration process.

Pressing this button runs sanity checks and starts the migration process. Once the target
database has been modified, the process must not be interrupted.

Status

-] Adempiere Migration Teol -+ X
File Help
Parameters Migration Mode
Source Target ® upgrade) transfer
(reference) dive data)
version 354a (2009-09-15) 261 (2007-04-27) Options
\rendor||wstgresql |v|||)ustgresq| |v| log level |actions |v‘
host [localhost | localhost

attempt translations

|
port 5432 |5432 | [v] preserve table IDs
user [reference | [adempiere |
- [] drop source
password [referance | [adempiere |
system user [| optimize database

system password

database ||'eference |v||adem|)iere |v|

driver jdbc:postgresglireference jdbcpostgresqladempiere

catalog |referem:e |v | |adem|lie|'e |v|
schema|referem:e |v||adem|)iere |v|
| Q Gesel || @ fEacL | # Start Migration
e —
Status
step
action
detail
view trace | view warnings || view errors ‘ ‘ xgancel || #l Close ‘

Figure 3.6. Status Display

The current status of the running migration processis displayed, indicating what action is being
performed in which migration step.

step
Thisfield displays the current migration step being performed, which can be one of:

* CONNECT TO DATABASES

* LOAD METADATA

* SYNCHRONI ZE TARGET FROM SOURCE
* CLOSE DATABASE CONNECTI ONS

* DONE

action
This field displays which action or operation is currently being performed within above
migration step.

det ai |
Thisfield displays details of the current action being performed, for example which record
is presently being updated.

23

The User Interface

View Buttons

Adempiere Migration Tool

File Help
Parameters Migration Mode
Source Target @ upgrade ' transfer
(reference) (ive data)
version 354a (2009-09-15) 261 (2007-04-27) Options
\rendor||wslgresql |v|||)ustgresq| ‘v| log level ‘actions |v|
host [localhost | [locainost | [¥] attempt translations
port (5432 5432
port | | | [v] preserve table IDs
user |reference | [adernpiere |
- []drop source
password [reference | [adempiere |
system user || optimize database
system password
database ||'eferem:e |v||adem|)iere ‘v|

driver jdbc postgresglreference jdbcpostgresgl adempiere

catalog |referem:e |v | |adem|)ie|'e ‘v|
schema|referem:e |v||adem|)iere ‘v|
e T %wa]
Status
step
action
detail

view trace view warnings view errors | *gancel H] Close |

Figure 3.7. View Buttons
Press one of these buttons to view the different log files.

View trace
View a snapshot of the last 500 lines of the trace log. The trace log contains all output
messages as defined with the log level.

Vi ew war ni ngs
View asnapshot of the last 500 lines of the warning log. The warning log contains tasks to
be performed manually by the database administrator after migration, such as making sure
that views and functions were translated correctly.

view errors
View asnapshot of thelast 500 lines of the error log. The error log contains all errors which
occurred during migration and need to be fixed.

24

Starting from the Command Line

Close Buttons

-] Adempiere Migration Tool -+ X%
File Help
Parameters Migration Mode
Source Target @ upgrade ' transfer
(reference) dive data)
version 3543 (2009-09-15) 261 (2007-04-27) Options
vendor||wstgresql |v|||)ustgresq| |v| log level |actions |v‘
host [localhost | localhost |
port 5432 5432
L | Il | preserve table IDs
user [reference | [adempiere |
[] drop source
password [referance | [adempiare |
system user [] optimize database

system password

database ||'efe|'ence |v||adem|)ie|‘e |v|

driver jdbcpostgresqlireference jdbc postgresgladempiere

catalog |refe|en|:e |v | |adem|lie|'e |v|
schema|lefuence |v||adem|liem |v|
| P reset || B reset |

Start Migration

Status

step

action

detail

‘ 38 cancel || @l Close

Figure 3.8. Close Buttons

Cancel
Stop the migration process and close the program without saving any settings.

O ose
Stop the migration process and save settings and parameters before closing the program.

Starting from the Command Line

Of course MIGRATE does not have to be started with the RUN_Migrate script but can also be
started directly from the command line. This allows MIGRATE to be called from other scripts for
automating migration, if required.

The command to start MIGRATE from the command lineis:
java[j ava Options] -cpclasspath [migrate Options] com.kkalice.adempiere.migrate.Migrate

Java Options
These are the options used by the Java Runtime Engine.

Sufficiently high memory settings should be used so that MIGRATE does not run out of mem-
ory.

Recommended are: - Xms64M - Xmk512M
If the database contains large objects, higher settings may be necessary.
Classpath

The classpath should contain the file mi grate. j ar aswell as the JIDBC database drivers
for the databases to be used, for example:

25

Starting from the Command Line

$ADEMPI ERE_HOVE/ | i b/ mi grat e. j ar: $SADEMPI ERE_HOVE/ | i b/ post gr esql . j ar : $ADEMP| ERE_HOME/ | i
b/ oracle.jar

or:

m grate.jar:/usr/share/javal postgresql-jdbc.jar:/opt/oracle/jdbc/lib/ojdbcl4.jar

Of course only the JDBC drivers for the database vendors you will actually be connecting
to need to be supplied.

MIGRATE Options

Options passed to MIGRATE must be prefixed with - D so that java knows it must pass the
options on to the application as system properties.

It ishighly recommended that all options and parameters are explicitly set on the command
line to avoid unpleasant surprises when values you were expecting as default are unexpect-
edly overridden by environment variables or the configuration file.

GUI Mode/ Text Mode/ Silent Mode
Two options are only available when starting MIGRATE from the command line;

- Di sText
MiGRATE will run in Text mode, the GUI will not be started. All parameters and
options must be provided by environment variables, the configuration file, or com-
mand line arguments.

-Di sSil ent
All console output will be suppressed. Thisimplies- Di sText .

If none of these arguments are passed, MIGRATE will run interactively with a Graphical
User Interface.

Migration Mode
Upgrade mode or transfer mode is selected by thei sUpgr ade property:

- Di sUpgr ade=Y
run migration in upgrade mode.

- Di sUpgr ade=N
run migration in transfer mode.

Options

- DmaxLoglLevel =<l og | evel >
Usefollowing Java log levelsto correspond to the threshol ds which can be selected
from the GUI:

OFF =no | oggi ng
SEVERE =errors only
WARNI NG = post-m gration tasks

I NFO =mgration steps
CONFI G =actions
FI NE =details

26

Starting from the Command Line

FI NER =SQL update queries
FINEST =SQ read queries
ALL =everyt hing

-Dattenpt Transl ati on=Y, N
whether to trandate views and functions

- DpreserveTabl el D=Y, N
whether to preserve table IDs

- Ddr opSource=Y, N
whether to drop the source database after successful migration

- Dopti m zeDat abase=Y, N
whether to optimize the target database

Parameters
Source connection parameters:

- Dsour ceDB_vendor =<dat abase vendor >

- Dsour ceDB_host =<host >

- Dsour ceDB_port =<port>

- Dsour ceDB_nane=<dat abase nane>

- Dsour ceDB_cat al og=<cat al og>

- Dsour ceDB_schena=<schena>

- Dsour ceDB_user =<nor mal user >

- Dsour ceDB_passwd=<nor mal passwor d>

- Dsour ceDB_syst enlJser =<syst em user >

- Dsour ceDB_syst enmPasswd=<syst em passwor d>

And target connection parameters.

- Dt ar get DB_vendor =<dat abase vendor >

- Dt ar get DB_host =<host >

- Dt arget DB_port =<port >

- Dt ar get DB_name=<dat abase nane>

- Dt ar get DB_cat al og=<cat al og>

- Dt ar get DB_schena=<schena>

- Dt arget DB_user =<nor mal user>

- Dt ar get DB_passwd=<nor mal passwor d>

- Dt arget DB_syst emJser =<syst em user >

- Dt ar get DB_syst enmPasswd=<syst em passwor d>

To pass an empty string, either omit the string after the equal sign or write only the
parameter name without any equal sign:

- Dsour ceDB_cat al og=
or just
- Dsour ceDB_cat al og

Example:

27

Post-Migration Tasks

The following command runs a transfer migration from an ORACLE to a POSTGRESQL database,
assuming that ni gr at e. j ar isinthe current directory. Everything should be typed on oneline:

java -Xms64M -Xmx512M -cp migrate.jar:/usr/sharefjava/postgresql-jdbc.jar:/opt/or acle/jdbc/lib/ojdbcl4
Jjar -DisText -DisUpgrade=N -DmaxL ogL evel=CONFIG -DattemptTranslation=Y -DoptimizeDatabase=N
-DsourceDB_vendor=or acle -Dsour ceDB_host=localhost -DsourceDB_port=1521 -DsourceDB_name=erp
-Dsour ceDB_schema=compiere -Dsour ceDB_user=compier e -Dsour ceDB_passwd=compier e -Dsour ceDB _
systemUser =system -Dsour ceDB_systemPasswd=manager -DtargetDB_vendor=postgresgl -DtargetDB_ho
st=localhost -DtargetDB_port=5432 -DtargetDB_name=adempiere -DtargetDB_schema=adempier e -Dtar g
etDB_user=adempiere -DtargetDB_passwd=adempier e com.kkalice.adempiere.migrate.Migrate

Post-Migration Tasks

MIGRATE aready runs sanity checks and clean-up procedures after migration, so it is
not necessary to start any post-migration scripts such as RUN_PostMigration.sh (or
RUN_PostMigration.bat).

However, the database administrator should check the log files to verify whether any manual
interventionisrequired after migration has completed, particularly the warning log and the error

log.

For a transfer migration, warnings and errors issued for non-customized objects or system
records can usually beignored, asthey will be replaced during the subsequent version migration
anyway. Only problemswith customized objects or live data of real clients need to be addressed
by the database administrator.

Warnings

The warning log contains tasks to be performed manually by the database administrator after
migration.

Table 3.1. Warning Messages

Warning Mode Cause Solution
Preservi ng node ...in | upgrade | System nodes would normally Review thislist to verify whether al
tree ... be purged from trees, but are customized system nodes are really

preserved if they are recognized as a| needed in the new version.
customization (for example, custom
entries in the system-wide menu).

Not dr oppi ng upgrade | A table not existing in the reference | Review thislist to verify whether al
customi zed table .. database would normally be customized tables are really needed
dropped, but it is kept aive if in the new version.
recognized as a customized table.
Mist re-write transfer |If datais migrated from adatabase | Trandate the function called by the
custom zed trigger in which triggers can contain inline |trigger into the target database's
function .. code to a database in which triggers | syntax.

themselves can not contain code
but only point to functions, the
inline code has to be converted

to acallable function. At the

time of conversion, the number

of argumentsto the functionis
unknown, and since also tranglation
of functionsis not implemented

28

Errors

Warning Mode Cause Solution
yet, the trigger is basically rendered
useless.
Mist verify transfer | MIGRATE attempts to trandlate Review that the object is trandlated
cust oni zed obj ect objects, but the result is not correctly and workstheway it is
guaranteed to be correct. intended to.
Mist re-wite object | transfer |Sometimestranslation of an object |Manually translate the object into
...[error nessage] fails. MIGRATE then just replaces the |the target database's syntax.
object's code with a compilable stub
and indicates the last error as hint
why translation failed.
Modified ...rows in ...| upgrade |A table contained values which Review the table to make sure that
to conply with check would violate the check constraint | the modifications do not disrupt any
constrai nt rule. Those values have been businesslogic.
modified to comply with the
constraint.
Coul d not find upgrade |If anew column isadded to atable |If no error isreported when the
correct parent for .. and that column is part of aforeign |foreign key is created, this warning
from..in ..to .. key, MIGRATE attemptsto find the |can beignored. Otherwise the child
correct parents for records already | records must be linked to the correct
existing in the child table. This parents manually. (If you know
warning isissued if the correct what hint can be used to deduce the
parents could not be found. correct parent, file abug report).
Errors

The error log contains all errors which occurred during migration and need to be fixed. If an
error was raised by the database driver, the original error message is added as a hint.

Table 3.2. Error Messages

Error

Cause

Solution

Could not find driver ..
[error nessage]

The required JDBC driver could not
be found.

Make sure the JDBC driver isin the
classpath.

Coul d not connect to

dat abase ...[error nessage]

A connection to the database could
not be established.

Make sure host name, port, database
name, user name, and user password
are correct.

Make sure the server isreachable
over the network.

Make sure access configuration
allows connections from your IP
address.

Coul d not conmt changes in
...[error nessage]

Coul d not rol
in

back changes
...[error nessage]

Coul d not close ...
[error nessage]

Consult the database vendor's
manual about the cause of the error.

Eliminate the cause of the error.

Coul d not determ ne product

vendor for ...[error nessage]

The database vendor could not be
determined or is unsupported.

Explicitly set the database vendor.

Coul d not determ ne catal og
for

...[error nessage]

No meaningful catalog could be
determined.

Explicitly set the catalog to use.

29

Errors

Error

Cause

Solution

Coul d not determ ne schema

for ...[error message]

No meaningful schema could be
determined.

Explicitly set the schemato use.

Coul d not drop schema ...
[error message]

The target schema could not be
dropped.

Make sure the user has sufficient
privilegesto drop a schema.

Coul d not test character set

in ...[error message]

MIGRATE temporarily creates a
table with some string fields to
check how the JDBC driver reports
character sizes. An error occurred
whiletrying to create this table.

Make sure no table with the name
kkax_mi gr _chart est previously
existsin the database.

Target table ...does not
exi st
Source table ...does not

exi st

Target translation table ...
does not exi st

Join table ...does not exist

Extra table ...does not exist

Tables which were expected to exist
for terminology checking could not
be found.

Terminology checking will only
be successful on databases with
an ADEMPIERE-Style Application
Dictionary.

Coul d

[error

not set savepoi nt
message]

Coul d

[error

not get savepoi nt narme
message]

Coul d not
savepoi nt

rol Il back to

...[error nessage]

Coul d not rel ease savepoi nt
...[error nessage]

Coul d not prepare statenent
...[error nessage]

Coul d not
st at ement

reset prepared
...[error nessage]

Coul d not
st at ement

cl ose prepared
...[error nessage]

Coul d not count paraneters
for prepared statenent
[error message]

Coul d not set paraneter
...of prepared statenment
[error message]

Coul d

[error

not create statenent

message]

Coul d

[error

not cl ose statenent

message]

Coul d not execute
prepared statenent query ...
[error message]

Coul d not execute sql
...[error nessage]

query

Coul d not close resultset

[error message]

Consult the database vendor's
manual about the cause of the error.

Eliminate the cause of the error.

30

Start the Application Server

Error

Cause

Solution

Coul d not nobve cursor in

result set ..[error nessage]

...from

...[error nessage]

Coul d not read col um

result set

Coul d not check last colum
value fromresult set

[error nessage]

Coul d not execute prepared
statenent command ...
[error nessage]

Coul d not execute sq

comand ...[error message]

unknown data type ..

No unambiguous data type ID exists
for the data type

File abug report.

unknown data type or extra
logic required for data type
ID ..

The unambiguous data type ID
could not be converted to a vendor-
specific data type

File abug report.

Instantiation Exception for

class ...[error nessage]

Access Exception for
...[error nessage]

Il egal
cl ass

Could not find interface ..

[error nessage]

A Java interface could not be
instantiated.

File abug report.

A dat abase can not

be migrated to itself
(source and target nust
di fferent)

be

Source and target connection
parameters must point to different
databases.

Make sure source and target
connection parameters are correct.

Source and target need to
be same dat abase vendor for
upgr ades

Upgrades can only be run if source
and target are the same database
vendor.

Choose the correct reference
database or run atransfer migration.

Start the Application Server

Now that your database has been successfully migrated, all errors have been fixed, and all warn-
ings have been taken care of, the application server may be started again.

Users are welcometo log in.

31

32

Migrate User Manual

Compiling and Extending

Compiling MIGRATE

Normally there should be no need to compile MIGRATE, as it will be installed together with
ADEMPIERE.

However, there may be situations when you separately want to compile MIGRATE, either to
modify the code to suit your personal needs, or to fix bugs or extend the code and hopefully
contribute your enhancements to the ADEMPIERE project.

Requirements

MIGRATE requires the JaAvA DeveLoPMENT KiT version 1.6 (JDK 6)1 and therefore also at least
version 3.5.3a of ADEMPIERE.

Downloading and Compiling the Source Code

1. Download the ADEMPIERE Source.

hg clone http://adempier e.hg.sour cefor ge.net/hgr oot/adempier e/ladempier e#tdevel opment .
2. You can either compile the complete ADEMPIERE project or only the MIGRATE sub-project.

* To compile the complete ADEMPIERE project, change to directory uti | s_dev.

cd utils dev

* Tocompileonly the MIGRATE sub-project, change to directory ni gr at e.

cd migrate

3. Then execute RUN_build.sh (or RUN_build.bat).

—JRUN_build.sh

Thereisactual ly only one reason for this limitation: Some JDBC drivers do not return areadable SQL statement but only an object reference
when the toString() method is called on a prepared statement, rendering it useless for logging purposes. Therefore MIGRATE uses a wrapper
around the PreparedStatement class, which overrides the toString() method and returns ahuman readabl e string to be used for logging. All other
methods are caught to extract variable information which is used to generate the string, and then passed on to the original PreparedStatement
class. In Java 1.6, some new methods were added to PreparedStatement, which also accept or return classes new to Java 1.6. Since Java does
not allow conditional compiling, a choice had to be made whether to be compatible with version 1.5 or version 1.6. Naturally, a choice was
made for the newer version.

33

Building and Running MIGRATE in EcLIPSE

4. TheresultingJJARfile(ni grate. j ar) will becreatedintheni gr at e project directory and
also copied to the. . / 1'i b directory.

5. Thiswill also generate the APl and user documentation, to be found in the ni gr at e/ api
doc and ni gr at e/ user doc directories, respectively.

For details on how to work with ADEMPIERE source code, consult the ADEMPIERE documentation
[http://www.adempiere.com/index.php/Compil€].

Building and Running MIGRATE in ECLIPSE

Consult the AbempPIERE documentation [http://www.adempiere.com/index.php/Create_your A
Dempiere_development_environment] on how to compile and run AbempiERe from within
ECLIPSE.

Note that the JIDBC drivers for installed databases must be in the classpath.
If you have installed ADEMPIERE, they can be found in $ADEMPI ERE_HOVE/ | i b:

* $ADEMPI ERE_HOVE/ | i b/ oracl e. j ar for ORACLE
e $ADEMPI ERE_HOVE/ | i b/ post gresql . j ar for POSTGRESQL

Otherwise they can be found in subdirectories of your local database installation, for example

 $ORACLE_HOME/ j dbc/ 1 i b/ oj dbc14. j ar for ORACLE
e /usr/share/javal postgresql -jdbc.jar for POSTGRESQL

To add files or directoriesto the cl asspat h in EcLipsE (version 3.4.1), in the Run menu select
Run Confi gurations.., select the d asspat h tab and click the Add Ext er nal JARs...button.

= Run Configurations x

Create, manage, and run configurations —
Run a Java application @

- "
T B X | B v

It filter text] = =
ype hiter texi ® Main [9= Arguments | =4 JRE [Classpath - E- Source| B§ Environment | = Common
[£]C/C++ Local Application || | Classpath:

Name: Migrate

b @ Eclipse Application <~ ‘; Bootstrap Entries up
il Java Applet =\ JRE System Library [jdk1.6.0_16] Down
= [1] Java Application < & User Entries =
+ & migrate (default classpath) Remove
Ju Junit os 0jdbcl4.jar - fopt/oracleforacle/jdbc/lib Add Projects...
Ji Junit Plug-in Test . postgresgl-jdbc.jar - /usr/share/java/
2 yehonrun Add JARs...
22 Jython unittest Add External JARs...

@ 0SGi Framework
Z5 Python Coverage
Z Python Run

Z5 Python unittest Restore Default Entries
Juy Task Context Test

Advanced...

Edit...

>
Filter matched 15 of 15 items

@ Run Close

Figure4.1. JDBC drivers must be set in thecl asspat h for MIGRATE to run in EcLipsE

http://www.adempiere.com/index.php/Compile
http://www.adempiere.com/index.php/Compile
http://www.adempiere.com/index.php/Create_your_ADempiere_development_environment
http://www.adempiere.com/index.php/Create_your_ADempiere_development_environment
http://www.adempiere.com/index.php/Create_your_ADempiere_development_environment

Extending MIGRATE

Extending MIGRATE

Source Files

Being open-source, MIGRATE has the advantage that you can modify the source code to fit your

particular needs.

More than that, MIGRATE is designed to be easily extendable for localization and for handling
additional database vendors, and you areinvited to help and contribute your solutionsto Abewm-

PIERE.

To help you navigate the source files, they are listed here by category:

Table 4.1. Source Files

Category

Sour ce Files

Main class

M grate.java

Parameters and constants

Paraneters.java

Graphical User Interface

Qui . java
Hel pAbout . j ava
Hel pl nfo.java

i mges/ *
Logging M gr at eLogger . j ava
M gr at eLogger _Formatter.java
M grateLogger _Filter.java
Pr epar edSt at enent W apper . j ava
Localization Messages. j ava

User Documentation

manual . xm
i mages/ doc_

JDBC connection to database

DBConnecti on. j ava

Vendor-specific SQL-generation and database rules
and conventions

DBENgi ne. j ava
DBEngi nel nterface. java

DBEngi ne_Oracl e. j ava
DBEngi ne_Post gresql . j ava

Database objects

DBhj ect . j ava
DBhj ect I nterface. java
DBoj ect Definition.java

DBCbj ect _Tabl e. j ava
DBObj ect _Tabl e_Col umm. j ava

DBoj ect _Pri maryKey. j ava
DBhj ect _Pri maryKey_Tabl e. j ava
DBoj ect _Pri mar yKey_Col umm. j ava

DBoj ect _For ei gnKey. j ava
DBOhj ect _For ei gnKey_Tabl e. j ava
DBoj ect _For ei gnKey_Col umm. j ava

DBObj ect _Check. j ava
DBObj ect _Check_Tabl e. j ava

35

Adding Languages and L ocales

Category Source Files
DBObj ect _Check_Rul e. j ava

DBOhj ect _Uni que. j ava
DBOhj ect _Uni que_Tabl e. j ava
DBOhj ect _Uni que_Col umm. j ava

DBObj ect _I ndex. j ava
DBOhj ect _I ndex_Tabl e. j ava
DBbj ect _I ndex_Col umm. j ava

DBOhj ect _Vi ew. j ava
DBOoj ect _Vi ew Definition.java

DBOhj ect _Sequence. j ava
DBOhj ect _Sequence_Counter.j ava

DBObj ect _Function. java
DBOoj ect _Functi on_Argunent.j ava
DBOhj ect _Functi on_Body. j ava

DBOhj ect _Operator. java
DBOhj ect _Operat or _Si gnature.java
DBOhj ect _Operator_Definition.java

DBOhj ect _Trigger.java
DBoj ect _Tri gger_Tabl e. java
DBOoj ect _Trigger_Definition.java

Application Dictionary Objects ADObj ect _Tr eeNode. j ava

Adding Languages and Locales

All messages are contained in the resource file Messages. j ava, which contains US-English
text as default locale.

To add additional languages or locales, copy Messages. j ava to anew filefollowing JAvA's Re-
source Bundle [http://java.sun.com/devel oper/technical Articles/Intl/ResourceBundles/] nam-
ing convention.

For example, to create a French resource file, name it Messages_fr. j ava.

To differentiate between French as spoken in France and French as spoken in Canada, create
two resource files named Messages_fr_FR. j ava and Messages_fr_CA. j ava.

Of course the class declaration must be changed to match the file name, for example pub-
lic class Messages extends ListResourceBundl e { ..wouldbecomepublic class
Messages_fr_FR ext ends Li st ResourceBundl e {

The file contains an array of {“key”, *“localized String”} pairs. The keys should not be
modified, asthey are used to ook up the localized string by the Resource Bundle. The localized
string should be trandlated to the required language.

36

http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles/
http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles/
http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles/

Adding Database Vendors

Note that while Resource Bundles generally accept { “ key”, bject} pairs, MIGRATE can only
handle String values such asin { “key”, “String”} pairs.

Adding Database Vendors

To be able to communicate with different database vendors and follow their conventions and
rules, MIGRATE uses alayer of “database engines’ which answer to specific predefined requests
and provide vendor-specific SQL statements.

These database engines areimplemented as JAvA Interfaces and can therefore easily be extended
to other database vendors. Inthiscase, “easily” just meansthat interfacesfor additional database
vendors can easily be added, but the actual programming and debugging of such interfaces will
still be alaborious task.

The interface definition, manifested in source file DBEngi nel nt er f ace. j ava, defines which
functions a vendor-specific database engine must contain, what arguments those functions will
be given, and what MIGRATE expects as return values. Consult the DBEnginel nterface API [../
apidoc/com/kkalice/adempiere/migrate/DBENginel nterface.html] for details (it is generated by
javadoc during compilation).

Two database engines are included with the origina distribution of MIGRATE: one for ORACLE
and one for POSTGRESQL.

Toadd anew database engine, it isprobably easiest to make acopy of thefilewhich most closely
matches the vendor you want to implement, name it according to the new vendor (for example,
DBENngi ne_mwsSql . j ava, Or DBEngi ne_AdabasD. j ava), and rename the class declaration inside
thefile (publ i ¢ cl ass DBEngi ne_wsql i npl ement's DBENngi ne_I nterface {..,0rpublic
cl ass DBENgi ne_AdabasD i npl ement's DBEngi ne_I nterface {..).

Then go through the methods step by step, compare the difference between
DBEngi ne_Oracl e.java and DBEngi ne_Postgresql.java, and figure out what your
database vendor requires. After you are done programming the interface, extensive testing and
debugging will follow.

To Do

The following are some features which would be nice for MIGRATE to have, but which have not
been implemented yet.

The community isinvited to submit contributions:

ldentify Renamed Tables

In: M grat e.synchroni zeTabl es()

2For this reason, to trandlate keyboard codes for mnemonic highlighting of menu items, labels, or buttons, the keyboard code, which isan int,
is converted to an Integer which is converted to a String, asin:

{" gui MenuHel p", "Hel p"},
{" gui MenuHel pMvhenoni c", new | nt eger (KeyEvent. VK H).toString()},

37

../apidoc/com/kkalice/adempiere/migrate/DBEngineInterface.html
../apidoc/com/kkalice/adempiere/migrate/DBEngineInterface.html
../apidoc/com/kkalice/adempiere/migrate/DBEngineInterface.html

ToDo

MIGRATE drops tables not existing in the reference database and adds tables not existing in the
target. So if atable has been renamed, the data contained in that table will belost. It istherefore
necessary to identify tables which have been renamed.

The obvious solution would be to check the AD_El ement _I D of thetable's primary key, but that
method will fail:

In the past, when C_Al | ocat i on was renamed to C_Al | ocat i onLi ne, the primary key C_Al | ocati on_I D (ele-

ment 1380) became C_Al | ocat i onHdr _I D, and a hew primary key C Al | ocat i onLi ne_| D (element 2534) was
created for the renamed table.

A different solution must be found.

Preserve Parent Links

In: M gr at e.pr eser vePar ent Li nks()

If atablein the live database does not contain a column existing in the reference database, that
column will be created with a default value. But if the new column is used as part of aforeign
key constraint in the reference database, the default value will not reference any parent record
in the target database, which will result in an error when the foreign key is created.

Such "unlinked" fields should be linked to the correct parent, and it must be deduced from other
data in the table what the correct parent is.

Currently the hints how to find the correct parent are hard-coded.

At sometime, aC_Dunni ng_I D column was added to the C_Dunni ngRun table, which was used as aforeign key to
C_Dbunni ng. When running an upgrade migration, the column is added and filled with 0 as default value. But 0 does
not point to any parent in the C_bunni ng table, and would thus result in an error when the foreign key is created.
It turns out that C _Dunni ngRun contains a column caled C Dunni ngLevel | D, which links to the table
C_Dunni ngLevel . And C _Dunni ngLevel has a link to the C_Dunni ng Table. So the correct target for the
new C_bunni ng_I D column can be deduced by following the link to C_Dunni ngLevel _I D and from there to
C _Dunni ng.

This hint is currently hard-coded.
MiGRrRATE should be able to find out by itself how to deduce the correct parent.

Aslong as that can not be done, such hints must continue to be hard-coded as additional situa-
tions of this type are encountered.

Populate New Parents

In: M gr at e.popul at eNewPar ent s()

If new tables exist in the reference database but not in the target, they might be parent tables
which must be filled with data from already existing child records.

Originally therewas only atable C_Al | ocat i on. At some point, that table wasrenamed C_Al | ocat i onLi ne, and
anew parent table C_Al | ocat i onHdr was introduced.

38

ToDo

At that time, C All ocationHdr ID had to be set to the value of C All ocationLine ID, and columns
in C All ocationHdr that also existed in C AllocationLine had to be filled with the values from
C Al | ocat i onLi ne, using

I NSERT | NTO ... SELECT .,

Thelink from the child to the new parent record had to be set, and since the parent record'sC_Al | ocat i onHdr _I D
now had the same value asthe child'sC_Al | ocat i onLi ne_I D, it could easily be done with:

UPDATE C Al l ocati onLi ne SET C Al l ocationHdr _I D = C Al l ocationLine_|I D VWHERE
C AllocationHdr _ID IS NULL;

Finally, any references from other tables pointing to the old child table had to be re-directed to point to the new
parent table, for example

UPDATE Fact Acct SET AD Tabl e | D=735 WHERE AD Tabl e | D=390;

(C_Al'l ocati onHdr hasAD Tabl e_| D735, C Al | ocati onLi ne hasAD_Tabl e_I D390)

Aboveisactualy not so difficult to implement, but the problem ishow to find the primary child
table.

For example, if C_I nvoi ceLi ne and C_I nvoi ceTax exist, and a new table C_I nvoi ce iscre-
ated, how do we know that C_I nvoi ceLi ne isthetable from which C_I nvoi ce should be pop-
ulated, not C I nvoi ceTax?

Another problem arises from inconsistent table naming:

C_I nvoi ce - C_I nvoi ceLi ne (the short name is the parent, the long name is the child)

C_ Al l ocati onHdr - C_Al | ocat i onLi ne (both parent and child names are long)

GL_Jour nal Bat ch - GL_Jour nal - G._Jour nal Li ne (the parent hasalong name, the child has
ashort name, and the grandchild has along name again)

Translation of Functions
In: DBEngi ne_vendor .t r ansl at eFunct i onBodyFul | ()

MIGRATE can more or less successfully translate views using regular expressions, but the trans-
lation of functionsis much more difficult.

Any help to trandate functions between the different procedural languages native to each
database vendor would be highly appreciated.

Fail-Safe / Safe-Falil

MIGRATE requires the migration process not to be interrupted.

If it does get interrupted, for example because of a power outage, you need to restore the live
database from your backup and start the migration process again from scratch. That is because
MIGRATE drops views, functions, constraints, indexes etc. before starting the migration process.
If themigration processisinterrupted beforethose objectsarerecreated, they will belost forever.

It would be niceif MIGRATE saved the meta-data it gathered and then used that saved meta-data
to resume migrations which were interrupted.

39

ToDo

Delete Client / Delete Transactions

The original CompiERE migration tool had a facility to delete transactions (in effect “resetting”
aclient) or to delete a client entirely. It is probably better not to include such functionality in
MIGRATE but rather have a specialized tool for such kind of task.

However, if anybody sees the need to add such functionality to MIGRATE, there already is a
private dr opd i ent () functioninthemain M gr at e class which can be made public and used
for such purpose. (It is currently used to drop the GardenWorld client).

There is no function yet to delete only transactions.

	Migrate
	Table of Contents
	Chapter 1. Introduction
	What is Data Migration?
	History
	Functionality
	Transfer Mode
	Upgrade Mode
	Putting it all Together

	Process Description
	Connect to Databases
	Load Meta-Data
	Structural Migration
	Data Migration
	Cleanup
	Enforce Constraints
	Close Database Connections

	Chapter 2. Marking Customizations
	Registering Custom Entity Types
	Mark Customizations in the Application Dictionary
	Mark Customizations in the Change Log

	Chapter 3. Migrating a Database
	Preperation
	Disconnect all Users
	Create a Backup
	Install new ADEMPIERE version
	Import Reference Database
	Verify Preconditions

	Running the Migration Tool
	The User Interface
	Migration Mode
	Options
	Parameters
	Command Buttons
	Status
	View Buttons
	Close Buttons

	Starting from the Command Line

	Post-Migration Tasks
	Warnings
	Errors
	Start the Application Server

	Chapter 4. Compiling and Extending
	Compiling MIGRATE
	Requirements
	Downloading and Compiling the Source Code
	Building and Running MIGRATE in ECLIPSE

	Extending MIGRATE
	Source Files
	Adding Languages and Locales
	Adding Database Vendors
	To Do
	Identify Renamed Tables
	Preserve Parent Links
	Populate New Parents
	Translation of Functions
	Fail-Safe / Safe-Fail
	Delete Client / Delete Transactions

