
2011-09-29

Migrate
Adempiere Migration Tool

Tool for Upgrading, Transferring, or Converting Databases

User Manual

Stefan Christians

Migrate User Manual
Adempiere Migration Tool
by Stefan Christians

2011-09-29

This program is part of Adempiere ERP Bazaar
http://www.adempiere.org

Copyright © Stefan Christians
Copyright © Contributors

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Contributors:
Stefan Christians

Sponsors:
K.K. ALICE

Adempiere is a registered trademark of Adempiere, Inc.

All other company or product names are mentioned for identification purposes only, and may be trademarks of
their respective owners.

Tool for Upgrading, Transferring, or Converting Databases

While tools such as migration scripts for upgrading or DDLUTILS for converting databases are suitable for
ADEMPIERE's application developers to maintain the seed database, they are a bit challenging for the average user
to maintain their live database.

MIGRATE provides a graphical user interface for upgrading databases.

It can also be used for converting between database vendors (like ORACLE and POSTGRESQL) or applications (like
COMPIERE and ADEMPIERE).

Migrate User Manual

iii

Table of Contents
1. Introduction .. 1

What is Data Migration? .. 1
History .. 1
Functionality ... 3

Transfer Mode .. 3
Upgrade Mode .. 4
Putting it all Together .. 4

Process Description .. 5
Connect to Databases ... 5
Load Meta-Data .. 5
Structural Migration ... 5
Data Migration .. 7
Cleanup ... 7
Enforce Constraints .. 8
Close Database Connections .. 8

2. Marking Customizations ... 9
Registering Custom Entity Types .. 9
Mark Customizations in the Application Dictionary .. 11
Mark Customizations in the Change Log .. 11

3. Migrating a Database .. 15
Preperation .. 15

Disconnect all Users ... 15
Create a Backup ... 15
Install new ADEMPIERE version ... 15
Import Reference Database .. 15
Verify Preconditions ... 16

Running the Migration Tool ... 16
The User Interface .. 17
Starting from the Command Line .. 25

Post-Migration Tasks .. 28
Warnings ... 28
Errors .. 29
Start the Application Server ... 31

4. Compiling and Extending ... 33
Compiling MIGRATE .. 33

Requirements .. 33
Downloading and Compiling the Source Code .. 33
Building and Running MIGRATE in ECLIPSE ... 34

Extending MIGRATE .. 35
Source Files .. 35
Adding Languages and Locales ... 36
Adding Database Vendors .. 37
To Do .. 37

iv

Migrate User Manual

v

List of Figures
1.1. Migration under COMPIERE ... 2
1.2. Traditional Migration under ADEMPIERE .. 3
1.3. New Migration under ADEMPIERE using MIGRATE ... 3
2.1. Entity Type Menu .. 10
2.2. Registering an Entity Type ... 10
2.3. Selecting an Entity Type .. 11
2.4. Window Customization .. 12
2.5. Change Log Menu .. 12
2.6. Marking Customizations ... 13
3.1. Grapical User Interface .. 17
3.2. Migration Mode .. 17
3.3. Options .. 18
3.4. Parameters ... 20
3.5. Command Buttons .. 22
3.6. Status ... 23
3.7. View Buttons .. 24
3.8. Close Buttons .. 25
4.1. Classpath Settings for ECLIPSE ... 34

vi

Migrate User Manual

vii

List of Tables
3.1. Warning Messages .. 28
3.2. Error Messages ... 29
4.1. Source Files .. 35

viii

Migrate User Manual

1

1
Introduction

What is Data Migration?
Welcome to MIGRATE, ADEMPIERE's universal migration tool for upgrading, transferring, and
converting databases.

“Migrating” means moving from one place to another. Specifically for databases, “migrating
data” can have either of the following meanings:

a. Transferring

The process of transferring data between storage types or computer systems. Like copying
data from hard disk to floppies, or from one server to another. This is commonly referred to
as Copying, Transferring, Moving, or Replicating.

b. Converting

The process of converting data from one format or system to another. For example, if your
company changes its database system from a proprietary vendor to an open source alternative,
the data needs to be manipulated to fit into the new database's format. This is commonly
referred to as Converting or Translating.

c. Upgrading

The process of upgrading a database's structure to enable new or different functionality. New-
er software versions may have introduced new functionality or bug fixes which require a dif-
ferent database structure than was available in previous versions. In such cases, your database
needs to be adjusted to the new structure so that it can be correctly utilized by the new soft-
ware version. This is commonly referred to as version migration or upgrading.

MIGRATE can do all three types of migration, therefore we call it a Universal Migration Tool.

You can use MIGRATE for following tasks:

• converting your database from ORACLE to POSTGRESQL
• converting your database for use by COMPIERE to use by ADEMPIERE

• upgrading your database for use by a different ADEMPIERE version

History
Before ADEMPIERE forked from the COMPIERE project, version migration was available to COM-

PIERE users for a fee. The user had to load the newest reference database, which was distribut-

History

2

ed with the COMPIERE software package, and then start a closed-source proprietary migration
program, which would check the license validity and download SQL scripts from COMPIERE's
web server to correctly upgrade the live database by copying the reference database's structure.
This was done through a graphical user interface which was straight-forward and worked very
well, but it had one disadvantage (apart from the obvious cost factor and being closed-source):
it was not very flexible.

This is inherent in the nature of scripts – they run a number of commands in sequence to get
from origin A to target B. It is not possible to get to a target C or D. For COMPIERE it meant
that it was only possible to upgrade from older versions to the newest version, not to a version
in between or downgrade to a lower version. You had to load the newest reference database to
work with the newest scripts. As a consequence, you were forced to do a full upgrade every
time, introducing many bugs and trial features, which was not ideal for business environments.

Figure 1.1. COMPIERE's proprietary upgrade service

Since COMPIERE's version migration was proprietary, it was not included in the code base from
which ADEMPIERE forked out, and a new solution had to be found quickly to be able to do any
version migration at all. Karsten Thiemann programmed a nice little tool called DBDIFFERENCE,
which would generate SQL-scripts based on the structural differences between the reference and
target database. The SQL-scripts would then be manually applied to upgrade the target database.

As the user is actively involved in SQL-script generation and can also review and edit the scripts
before they are applied to the target database, there is of course much more flexibility and con-
trol than was possible with COMPIERE's solution. But for the casual database user the task was
daunting, and real world implementations with numerous extensions and customizations mess-
ing up DBDIFFERENCE's logic required heavy interventions which were not always feasible. DB-
DIFFERENCE also relied mainly on the reference database's design, without giving much thought
to the contents of the Application Dictionary, a storage of meta-data and rules defining the data's
use by ADEMPIERE where also most customizations are defined.

Once your data reflected the structure required by an ADEMPIERE release, things got easier be-
cause you could use scripts pre-generated by the ADEMPIERE team (if you took good care of your
customizations), but getting to that point was a major task.

Functionality

3

Figure 1.2. ADEMPIERE's script-based solution required massive user intervention

To make things worse, with ADEMPIERE you had the choice of using POSTGRESQL, a free and
open-source database system. So if you previously used a proprietary database system, you
had to do a conversion migration to translate your data to POSTGRESQL. Another set of tools (
DDLUTILS) was used for this purpose, also requiring heavy user intervention.

So although the migration tools introduced by ADEMPIERE were very flexible and in many cas-
es proven to be workable, they lacked the ease of use old hands were accustomed to from
COMPIERE's version migration tool. Being very suitable for ADEMPIERE's application developers
to maintain the seed database, they are a bit challenging for the average ADEMPIERE user.

MIGRATE solves these disadvantages by providing a graphical user interface which makes it
easy to use for the uninitiated, and giving up on the script concept entirely by using algorithms
instead. Also MIGRATE uses a reference database against which the live database is checked,
but the algorithms also make heavy use of the meta-data available in ADEMPIERE's Application
Dictionary and thus are also aware of any customizations and extensions. Any changes to the
live database are made directly, no scripts are generated or need to be applied.

Figure 1.3. MIGRATE simplifies automated migration using algorithms instead of scripts

Functionality

Transfer Mode
MIGRATE reads the structure and data from a source database and writes it into a target database.
In its most simple form, this corresponds to what we previously described as Transfer Migration.

Upgrade Mode

4

You can therefore use migrate to transfer or copy a database from server A to server B, though
it is not recommendable. This kind of migration is very straight-forward and does not require
any overhead logic, and the tools provided by your database vendor (exp and imp for ORACLE,
pg_dump and pg_restore for POSTGRESQL) are much more suitable and extremely efficient.
MIGRATE is much too slow and bulky for this task.

However, MIGRATE comes in handy if the source and target are for different database vendors,
for example if you want to transfer your data from ORACLE to POSTGRESQL. This is what we
previously described as Conversion Migration.

In this case, MIGRATE reads content from the source database, translates it to a format understood
by the target database, and then writes it to the target.

Note that although MIGRATE attempts to correctly translate content to the target's format, this is
not always possible. Converting data types and indexes is relatively safe, converting views is
a bit more difficult, and translating functions and procedural languages, such as from PL/SQL to
PL/PGSQL, is virtually impossible if you do not program a full-fledged command interpreter.
Consequently, the user will be given warning messages to check on views that have been trans-
lated, but the translation of functions is currently not implemented at all.

In both above cases, data is read from the source and a new target is created, or an existing target
is overwritten, to contain the source's data. The only difference is whether or not the source and
target vendors are different. In MIGRATE, this kind of migration is called “Transfer Mode”.

Upgrade Mode
Things get more interesting if the target does not get overwritten, but if source data is merged
into existing target data: The table structure etc. of your live data in the target table is modified
to reflect the structure provided as reference from the source table. Data records missing in the
target will be added from the source. Views and Functions defined in the target will be replaced
by those defined in the source. So if a new ADEMPIERE version required new tables or views or
functions, that functionality would be copied to your live data from the source database. We
therefore call this kind of migration “Upgrade Mode”, and the source is the reference database
and the target is your live database.

This version migration is what will most often be used.

Note that version migration only refers to ADEMPIERE versions, not versions of the database en-
gine. Your database vendor will provide you tools to upgrade the database version, if necessary.
Normally this is also achieved very efficiently by exporting (or dumping) data, installing the
new database version, and then importing (or restoring) from the dump file.

Putting it all Together
Say you are currently running COMPIERE on an ORACLE database, and you want to change over
to ADEMPIERE on a POSTGRESQL database. You would do this migration in two steps (each step
will take approximately 3-5 hours, depending on the size of your live database):

First you would transfer your data from ORACLE to POSTGRESQL. MIGRATE will take care that
all data types are correctly translated and move the data. All tables, indexes, sequences, foreign

Process Description

5

keys etc. will be applied in the target database. An attempt will be made to translate views.
Functions will be commented out (so that you can review the original code) and replaced with
compilable stubs.

This translation is intended as a one-way step. If you try to translate back and forth between
database vendors, you will eventually end up with gibberish.

As second step, you would load the reference database and run a version migration. Now the
views and functions will be replaced by those defined in the reference database. So only your
custom views need to be checked and custom functions need to be translated manually.

When done, you are ready to use ADEMPIERE running on POSTGRESQL. From now on, you will
only require version migrations each time you upgrade ADEMPIERE, and they will run signifi-
cantly faster.

Process Description
MIGRATE performs the following steps to run a migration:

Connect to Databases
MIGRATE uses JDBC to connect to the source and target databases.

If conducting a transfer migration, any existing data in the target database is erased.

Load Meta-Data
As a first step, some tests are made to detect and correct buggy behavior by some JDBC drivers.

Meta-data on the database's structure (tables, indexes, views, functions, sequences, foreign keys,
etc.) is loaded.

The Application Dictionary is accessed to gather information on customizations, system clients,
and languages used.

Structural Migration
To get rid of overhead, MIGRATE first of all removes all kinds of database objects which are not
tables from the target database:

• check constraints
• unique constraints
• foreign keys
• views
• operators
• triggers
• functions

Structural Migration

6

• primary keys1

• indexes1

With the database reduced to this state, MIGRATE can pretty much do whatever it wants without
running into constraint issues or being slowed down for integrity checks.

Then temporary tables are truncated to reduce the amount of data that needs to be migrated and
thus increase performance:

• Data from temporary tables (T_…) is removed
• Records from Import tables (I_…) which have already been imported are removed
• Records from the TEST table (Test) are removed
• Processes and Errors are removed (AD_PInstance, AD_Find, AD_Error)
• Changes which are not customizations are removed (AD_ChangeLog)
• Sessions older than a week are removed (AD_Session)
• Notes which have been processed are removed (AD_Note)
• Log entries older than a week are removed (…Log)

The GardenWorld demonstration client is dropped, and all system records which are not refer-
enced by real clients are purged.

Any sequences defined in the target are synchronized with the reference database, and sequences
which are not yet defined are added.

Finally, the main structural migration task of synchronizing the target's table structure starts:

• Non-customized tables are dropped from the target if they do not exist in the reference
database

• Tables existing only in the reference database are added to the target
• Tables existing in both the target and the reference database are synchronized:

• Target tables are renamed to have the same name as their counterparts in the reference
database2

• Non-customized columns are dropped from the target if they do not exist in the reference
database

• Columns existing only in the reference database are added to the target
• Columns existing in both the target and the reference database are synchronized so that the

target column has the same properties as the column in the reference database:
• column name
• data type and size
• default values
• nullable constraint

After table synchronization, any non-customized sequences are dropped from the target if they
do not exist in the reference database.

Database objects are recreated – all objects existing in the reference database are created in the
target, and those target objects which are customizations are re-created:

1For performance reasons, primary keys and indexes are actually dropped at a later stage, and also temporary indexes are created and later
dropped again during the migration process. These performance enhancements do not affect the functionality of the actual migration process
and are omitted in this description for simplicity's sake.
2This feature is not implemented yet.

Data Migration

7

• functions
• triggers
• operators
• views
• indexes3

• primary keys3

Data Migration
Data records are transferred from the reference database to the target:

• if the record does not yet exist in the target, it is added.
• if the record already exists in the target, the target record is updated to contain the same data

in all columns as the reference database.

New parent tables are populated4 (only for upgrade migrations). If new tables are added to the
target which use previously existing independent tables as child tables, records must be added
to the parent table to reflect already existing data in the child tables.

Parent links are preserved (only for upgrade migrations). If a target table did not contain a
column which is used as part of a foreign key constraint in the reference database, that column
will have been added with a default value which does not reference any parent record. The
correct parent must be found and the default value replaced with a link to the parent record.

Orphaned data is removed (only for upgrade migrations). Records who's parent records have
been purged during migration are orphans which are no longer required and must be deleted.

Check constraints are enforced (only for upgrade migrations). Records containing values which
would violate a check constraint are modified to comply with the constraint.

Cleanup
Cleanup operations are performed only for upgrade migrations:

Customizations are re-applied. Users may modify windows and processes in ADEMPIERE, but
those modifications would be overwritten and reset by the migration process. Modifications
which should be preserved can be marked as customization in the change log, and they will
be re-applied.

Sequence counters are checked to ensure that the next number is larger than any number already
used in the database. Missing sequence counters are added (Sequence counters defined in the
application dictionary as well as native database sequence counters).

Missing translations are added. If translation records are required but do not exist yet, they are
added with the original text from the main record.

Terminology is synchronized:

3For performance reasons, indexes and primary keys are actually recreated at a later stage after data migration.
4This feature is not implemented yet.

Enforce Constraints

8

• New elements are created in the application dictionary for any columns or parameters which
have no base element defined yet.

• unused elements are deleted
• consistent terminology is deployed throughout the application dictionary

Trees are re-organized so that customized nodes are inserted back into their original locations.

Security settings are verified and role access records updated or added.

Version information stored in the application dictionary is updated.

Enforce Constraints
Constraints are recreated – all constraints existing in the reference database are created in the
target, and those target constraints which are customizations are re-created:

• foreign keys
• check constraints
• unique constraints

Close Database Connections
The source connection is closed and, if appropriate, the reference database is dropped.

Any remaining changes are committed to the target and the target connection is closed. If re-
quested, the live database will be optimized.

Migrate User Manual

9

2
Marking Customizations

Customizations are preserved through migrations. Entities which are not recognized as cus-
tomizations will be dropped or overwritten from the reference database.

MIGRATE recognizes four different levels of customization:

CUSTOMPREFIXED

An entity is named with a special prefix which identifies it as a customization. Prefixes are
stored in the Application Dictionary.

CUSTOMMARKED

An entity is marked as customization in the Application Dictionary.

CUSTOMIMPLIED

An entity itself is not customized, but it contains customized components.

CUSTOMNONE

An entity is not customized.

The only way to determine the customization level is by consulting the Application Dictionary,
which means you must have informed the Application Dictionary about your customizations
before you start MIGRATE.

Registering Custom Entity Types
You can register four-letter entity types to identify your customizations. These four letters can
also be used as prefix to name database objects which are not maintained by the application
dictionary.

For example, if you decide to identify your customizations by entity type QRST, then you can
create a custom index and name it QRST_MyIndexName. Because QRST is registered as custom
entity type in the Application Dictionary, MIGRATE understands that QRST_MyIndexName is a
custom index and will preserve it.1

It is good practice to also name those objects which are maintained by the Application Dictionary
using your custom prefix, like QRST_MyTableName and QRST_MyColumnName. This makes the
customizations also easily recognizable by human database administrators.

1Exception: If the same four letters are also registered as entity type in the reference database, they will not be considered as customization
markers. The reasoning behind this is that if you use a customized reference database, those customizations contained in the reference database
should also be maintained and controlled by the reference database and not protected by MIGRATE.

Registering Custom Entity Types

10

Of course you can also use different entity types for different topics, like QRS1 for security
related customizations, QRS2 for accounting related customizations, etc.

To register your custom entity type, log in as System and open the window Application Dic-

tionary → Entity Type.

Figure 2.1. Select Entity Type from the Application Dictionary menu

Create a new record, enter four letters as your new entity type, and give it a short name and
a description.

Figure 2.2. Register your custom entity type in the Application Dictionary

Mark Customizations in the Application Dictionary

11

Mark Customizations in the Applica-
tion Dictionary
You can now use your new entity type to mark your customizations in the Application Dictio-
nary.

For example, if you add a new column to a table, you can define it as being of your new entity
type:

Figure 2.3. Select your custom entity type for newly created objects

Apart from your own entity types, you can of course also mark your customizations with one
of the predefined types User maintained, Applications, Other Customizations, Exten-
sions, or Other Extensions.

Do not use Adempiere or Dictionary, which mark your changes as system-maintained and
they will be dropped during the next version migration.

Mark Customizations in the Change
Log
In some cases it is not possible to identify your changes with a custom entity type.

For example, if you wanted to change the Business Partner window so that the organization field
is not displayed next to the client field but below it in the next row. Logged in as System, you

would make the changes in the window Application Dictionary → Window, Tab & Field.
Navigate to the Organization field, and deselect Same Line so that the field gets displayed
in the next row.

Mark Customizations in the Change Log

12

Figure 2.4. Tweaking window appearance

But as you can see, the entity type for this field is already Dictionary, and you can not apply
your custom entity type.

To still protect your change from being undone during the next version migration, you can mark
it as customization in the change log. For security reasons, ADEMPIERE keeps a log of changes

done to the system. The log can be accessed from the window System Admin → General
Rules → Security → Change Audit.

Figure 2.5. Select Change Audit from the Security menu

Mark Customizations in the Change Log

13

Find the change you want to keep permanently and mark it is customization:

Figure 2.6. Marking changes as customization in the Change Log

MIGRATE will preserve changes marked as customization in such way.

14

Migrate User Manual

15

3
Migrating a Database

Preperation

Disconnect all Users
The target database should be up and running.

No users should be logged in. Make sure all users are disconnected from the target and source
database.

That includes the ADEMPIERE server itself: Shut down the application server.

Create a Backup
You must have a backup of your live data before starting the migration process.

Remember the disclaimer at the beginning of this document: This program is distributed without
warranty of fitness for a particular purpose. It may migrate your data, or it may completely mess
up your database.

The easiest way to quickly create a backup is with ./RUN_DBExport.sh (or
RUN_DBExport.bat) in the utils directory.

That script will create a file ExpDat.dmp in the data directory, which can be easily restored
using ./RUN_DBRestore.sh (or RUN_DBRestore.bat), if necessary.

Install new ADEMPIERE version
If you want to do an upgrade migration, download the ADEMPIERE version you want to upgrade
to and install it.

Then execute ./RUN_setup.sh (or RUN_setup.bat) in $ADEMPIERE_HOME to configure ADEM-

PIERE. The settings saved are also used by MIGRATE.

Import Reference Database
If you want to do an upgrade migration, install the reference database:

Verify Preconditions

16

Execute ./RUN_ImportReference.sh (or RUN_ImportReference.bat) in the utils directory.

If you want to do a transfer migration, make sure the source database is up and running.

Verify Preconditions

Make sure that

• no users are logged in

• the ADEMPIERE application server is shut down

• you have a backup

• the reference database is imported (for upgrade migrations)

• the source or reference database is up and running

• the target database is up and running

Running the Migration Tool
Once all preparations have been done and verified, you can start MIGRATE by executing ./
RUN_Migrate.sh (or RUN_Migrate.bat) from the utils directory.

This will start the migration tool and display the interactive graphical user interface.1

When MIGRATE is started, it will read environment variables for setting parameters and options.
Since the RUN_Migrate script loads ADEMPIERE's environment before calling MIGRATE, it ef-
fectively means that ADEMPIERE's settings will also be used by MIGRATE. Any settings not de-
fined by environment variables will be supplemented with sensible values.

If $ADEMPIERE_HOME is defined, MIGRATE looks for a configuration file called
migration.config in the $ADEMPIERE_HOME/utils directory, otherwise it will look for the
configuration file in the current directory. If the file exists, configuration settings will be read
from that configuration file, and any settings loaded from the environment will be overwritten.
Once a migration was run, MIGRATE saves its settings to that configuration file, so next time it
is started, your last parameters and options will be used again.

Any command line arguments passed to MIGRATE will override the settings loaded from the
configuration file or from the environment so that command line arguments always take prece-
dence.

1To run in text mode and/or suppress console output, the keywords text or silent can be given to the RUN_Migrate script as command
line arguments.

The User Interface

17

The User Interface

Figure 3.1. MIGRATE's interactive Graphical User Interface

Once the user interface is displayed, you need to select the migration mode, select some options
to be used by the migration process, and set the database connection parameters.

Migration Mode

Figure 3.2. Migration Mode Settings

Select the mode in which to run the migration process.

The User Interface

18

Two different modes of migration can be performed:

upgrade

Upgrade target to newest version as found in source.

This mode can also be used to convert from other applications to ADEMPIERE.

transfer

Copy source to target.

This mode can also be used to convert from other databases to POSTGRESQL.

The default is to run an upgrade migration, but if different vendors are used as source and target
database (see Parameters below), only a transfer migration can be performed.

Options

Figure 3.3. Options

Several options can be set to control migration behavior. Which options are available depends
on the migration mode.

log level

MIGRATE creates three log files containing results of the migration process:

• migration_timestamp.error.log

contains any errors encountered during migration which must be fixed.

• migration_timestamp.warning.log

The User Interface

19

contains hints for the database administrator of what has to be checked or might need to
be done manually after migration has finished.

• migration_timestamp.trace.log

contains the output messages of what steps and actions MIGRATE has performed.

The log level option sets the threshold for messages to be recorded in the trace log. Messages
with a lower priority will not be logged.

Available log levels in order of descending priority are:
• no logging

• errors only

• post-migration tasks (warnings)
• migration steps

• actions

• details

• SQL update queries

• SQL read queries

• everything

The default log level is actions.

Note that levels of details or lower can create huge trace files. Be sure to have enough
disk space available.

attempt translations

This option is only available in transfer mode.

When converting from one database to another, views and functions need to be translated.

If selected, MIGRATE will attempt to translate views and functions, otherwise they will be
replaced with a compilable stub.

(Note that currently only translation of views is implemented).

The default is yes.

preserve table IDs

This option is only available in upgrade mode.

When running an upgrade, all system information is dropped. Table IDs therefore restart
with the highest used sequence number available after migration. It may be beneficial, how-
ever, to remember higher ID numbers used before migration to ensure consistency over dif-
ferent versions.

If selected, table ID numbers are preserved through migration, otherwise MIGRATE restarts
counting after migration

The User Interface

20

The default is yes.

drop source

This option is only available in upgrade mode.

When done with upgrading, the source database is no longer required and may be dropped
to clear space. However, the database administrator may wish not to drop it for reference
purposes.

If selected, the source is dropped after a successful upgrade, otherwise it is kept remaining
in the database after migration.

(Note that the source will only be dropped if no errors occurred during migration).

The default is no.

optimize database

After migration, the database can be automatically optimized. Most databases nowadays
have scheduled processes which regularly run optimization tasks, so it may not be necessary
to explicitly run them here. Examples for optimization tasks are space allocation or gathering
of statistics, but what is actually performed depends on which kind of database is running.

If selected, the target database is optimized after migration, otherwise it is left to the
database's automatic scheduler.

The default is no.

Parameters

Figure 3.4. Connection Parameters

Parameters are used to define the connections to the source and target databases.

The User Interface

21

In upgrade mode, the source is the reference against which the target's structure is updated, and
live data in the target remains intact.

In transfer mode, the source is copied to the target, and all live data in the target is overwritten.

Two identical sets of parameters must be defined, one for the source connection and one for
the target connection.

version

This field is read-only and displays the ADEMPIERE version number found in the database.

If no version number is displayed, it means that either no connection to the database could
be established, or the database contains no ADEMPIERE version information (which means
it is not an ADEMPIERE database).

vendor

The vendor (or product) of the database. Supported vendors currently are:
• ORACLE

• POSTGRESQL

The default is postgresql.

host

The name or IP-address of the server on which the database is running.

The default is localhost.

port

The port on which the database is listening.

Common port numbers are 5432 for POSTGRESQL or 1521 for ORACLE.

The default is 5432.

user

The normal database user as which to log in.

The default is reference for source and adempiere for target.

password

The normal database user's password.

The default is adempiere for both source and target.

system user

Some databases require a system user for certain operations2. This is the name of the system
user as which to log in.

The default is postgres.

2The system user and system password fields are not used if the selected database does not require log in by a system user for migration.

The User Interface

22

system password

The system user's password2.

The default is postgres.

database

The name of the database to use.

The default is reference for source and adempiere for target.

driver

This field is read-only and displays the URL which will be used by MIGRATE to connect to
the database. The driver and format used depend on the database vendor.

catalog

The catalog to use.

The usage and meaning of catalogs varies according to database vendor. If none is given,
MIGRATE will try to find a sensible catalog.

schema

The schema to use.

The usage and meaning of schemas varies according to database vendor. If none is given,
MIGRATE will try to find a sensible schema.

reset

Pressing this button resets the parameters to their original settings.

Command Buttons

Figure 3.5. Command Buttons

The User Interface

23

Start Migration

Start the migration process.

Pressing this button runs sanity checks and starts the migration process. Once the target
database has been modified, the process must not be interrupted.

Status

Figure 3.6. Status Display

The current status of the running migration process is displayed, indicating what action is being
performed in which migration step.

step

This field displays the current migration step being performed, which can be one of:

• CONNECT TO DATABASES

• LOAD METADATA

• SYNCHRONIZE TARGET FROM SOURCE

• CLOSE DATABASE CONNECTIONS

• DONE

action

This field displays which action or operation is currently being performed within above
migration step.

detail

This field displays details of the current action being performed, for example which record
is presently being updated.

The User Interface

24

View Buttons

Figure 3.7. View Buttons

Press one of these buttons to view the different log files.

view trace

View a snapshot of the last 500 lines of the trace log. The trace log contains all output
messages as defined with the log level.

view warnings

View a snapshot of the last 500 lines of the warning log. The warning log contains tasks to
be performed manually by the database administrator after migration, such as making sure
that views and functions were translated correctly.

view errors

View a snapshot of the last 500 lines of the error log. The error log contains all errors which
occurred during migration and need to be fixed.

Starting from the Command Line

25

Close Buttons

Figure 3.8. Close Buttons

Cancel

Stop the migration process and close the program without saving any settings.

Close

Stop the migration process and save settings and parameters before closing the program.

Starting from the Command Line
Of course MIGRATE does not have to be started with the RUN_Migrate script but can also be
started directly from the command line. This allows MIGRATE to be called from other scripts for
automating migration, if required.

The command to start MIGRATE from the command line is:

java [java Options] -cp classpath [migrate Options] com.kkalice.adempiere.migrate.Migrate

JAVA Options
These are the options used by the Java Runtime Engine.

Sufficiently high memory settings should be used so that MIGRATE does not run out of mem-
ory.

Recommended are: -Xms64M -Xmx512M

If the database contains large objects, higher settings may be necessary.

Classpath
The classpath should contain the file migrate.jar as well as the JDBC database drivers
for the databases to be used, for example:

Starting from the Command Line

26

$ADEMPIERE_HOME/lib/migrate.jar:$ADEMPIERE_HOME/lib/postgresql.jar:$ADEMPIERE_HOME/li

b/oracle.jar

or:

migrate.jar:/usr/share/java/postgresql-jdbc.jar:/opt/oracle/jdbc/lib/ojdbc14.jar

Of course only the JDBC drivers for the database vendors you will actually be connecting
to need to be supplied.

MIGRATE Options
Options passed to MIGRATE must be prefixed with -D so that java knows it must pass the
options on to the application as system properties.

It is highly recommended that all options and parameters are explicitly set on the command
line to avoid unpleasant surprises when values you were expecting as default are unexpect-
edly overridden by environment variables or the configuration file.

GUI Mode / Text Mode / Silent Mode
Two options are only available when starting MIGRATE from the command line:

-DisText

MIGRATE will run in Text mode, the GUI will not be started. All parameters and
options must be provided by environment variables, the configuration file, or com-
mand line arguments.

-DisSilent

All console output will be suppressed. This implies -DisText.

If none of these arguments are passed, MIGRATE will run interactively with a Graphical
User Interface.

Migration Mode
Upgrade mode or transfer mode is selected by the isUpgrade property:

-DisUpgrade=Y

run migration in upgrade mode.

-DisUpgrade=N

run migration in transfer mode.

Options

-DmaxLogLevel=<log level>

Use following JAVA log levels to correspond to the thresholds which can be selected
from the GUI:

OFF = no logging

SEVERE = errors only

WARNING = post-migration tasks

INFO = migration steps

CONFIG = actions

FINE = details

Starting from the Command Line

27

FINER = SQL update queries

FINEST = SQL read queries

ALL = everything

-DattemptTranslation=Y, N

whether to translate views and functions

-DpreserveTableID=Y, N

whether to preserve table IDs

-DdropSource=Y, N

whether to drop the source database after successful migration

-DoptimizeDatabase=Y, N

whether to optimize the target database

Parameters
Source connection parameters:

-DsourceDB_vendor=<database vendor>

-DsourceDB_host=<host>

-DsourceDB_port=<port>

-DsourceDB_name=<database name>

-DsourceDB_catalog=<catalog>

-DsourceDB_schema=<schema>

-DsourceDB_user=<normal user>

-DsourceDB_passwd=<normal password>

-DsourceDB_systemUser=<system user>

-DsourceDB_systemPasswd=<system password>

And target connection parameters:

-DtargetDB_vendor=<database vendor>

-DtargetDB_host=<host>

-DtargetDB_port=<port>

-DtargetDB_name=<database name>

-DtargetDB_catalog=<catalog>

-DtargetDB_schema=<schema>

-DtargetDB_user=<normal user>

-DtargetDB_passwd=<normal password>

-DtargetDB_systemUser=<system user>

-DtargetDB_systemPasswd=<system password>

To pass an empty string, either omit the string after the equal sign or write only the
parameter name without any equal sign:

-DsourceDB_catalog=

or just

-DsourceDB_catalog

Example:

Post-Migration Tasks

28

The following command runs a transfer migration from an ORACLE to a POSTGRESQL database,
assuming that migrate.jar is in the current directory. Everything should be typed on one line:

java -Xms64M -Xmx512M -cp migrate.jar:/usr/share/java/postgresql-jdbc.jar:/opt/oracle/jdbc/lib/ojdbc14
.jar -DisText -DisUpgrade=N -DmaxLogLevel=CONFIG -DattemptTranslation=Y -DoptimizeDatabase=N
 -DsourceDB_vendor=oracle -DsourceDB_host=localhost -DsourceDB_port=1521 -DsourceDB_name=erp
-DsourceDB_schema=compiere -DsourceDB_user=compiere -DsourceDB_passwd=compiere -DsourceDB_
systemUser=system -DsourceDB_systemPasswd=manager -DtargetDB_vendor=postgresql -DtargetDB_ho
st=localhost -DtargetDB_port=5432 -DtargetDB_name=adempiere -DtargetDB_schema=adempiere -Dtarg
etDB_user=adempiere -DtargetDB_passwd=adempiere com.kkalice.adempiere.migrate.Migrate

Post-Migration Tasks
MIGRATE already runs sanity checks and clean-up procedures after migration, so it is
not necessary to start any post-migration scripts such as RUN_PostMigration.sh (or
RUN_PostMigration.bat).

However, the database administrator should check the log files to verify whether any manual
intervention is required after migration has completed, particularly the warning log and the error
log.

For a transfer migration, warnings and errors issued for non-customized objects or system
records can usually be ignored, as they will be replaced during the subsequent version migration
anyway. Only problems with customized objects or live data of real clients need to be addressed
by the database administrator.

Warnings
The warning log contains tasks to be performed manually by the database administrator after
migration.

Table 3.1. Warning Messages

Warning Mode Cause Solution

Preserving node … in

tree …

upgrade System nodes would normally
be purged from trees, but are
preserved if they are recognized as a
customization (for example, custom
entries in the system-wide menu).

Review this list to verify whether all
customized system nodes are really
needed in the new version.

Not dropping

customized table …

upgrade A table not existing in the reference
database would normally be
dropped, but it is kept alive if
recognized as a customized table.

Review this list to verify whether all
customized tables are really needed
in the new version.

Must re-write

customized trigger

function …

transfer If data is migrated from a database
in which triggers can contain inline
code to a database in which triggers
themselves can not contain code
but only point to functions, the
inline code has to be converted
to a callable function. At the
time of conversion, the number
of arguments to the function is
unknown, and since also translation
of functions is not implemented

Translate the function called by the
trigger into the target database's
syntax.

Errors

29

Warning Mode Cause Solution

yet, the trigger is basically rendered
useless.

Must verify

customized object …

transfer MIGRATE attempts to translate
objects, but the result is not
guaranteed to be correct.

Review that the object is translated
correctly and works the way it is
intended to.

Must re-write object

… [error message]

transfer Sometimes translation of an object
fails. MIGRATE then just replaces the
object's code with a compilable stub
and indicates the last error as hint
why translation failed.

Manually translate the object into
the target database's syntax.

Modified … rows in …

to comply with check

constraint …

upgrade A table contained values which
would violate the check constraint
rule. Those values have been
modified to comply with the
constraint.

Review the table to make sure that
the modifications do not disrupt any
business logic.

Could not find

correct parent for …

from … in … to …

upgrade If a new column is added to a table
and that column is part of a foreign
key, MIGRATE attempts to find the
correct parents for records already
existing in the child table. This
warning is issued if the correct
parents could not be found.

If no error is reported when the
foreign key is created, this warning
can be ignored. Otherwise the child
records must be linked to the correct
parents manually. (If you know
what hint can be used to deduce the
correct parent, file a bug report).

Errors

The error log contains all errors which occurred during migration and need to be fixed. If an
error was raised by the database driver, the original error message is added as a hint.

Table 3.2. Error Messages

Error Cause Solution

Could not find driver …

[error message]

The required JDBC driver could not
be found.

Make sure the JDBC driver is in the
classpath.

Could not connect to

database … [error message]

A connection to the database could
not be established.

Make sure host name, port, database
name, user name, and user password
are correct.
Make sure the server is reachable
over the network.
Make sure access configuration
allows connections from your IP
address.

Could not commit changes in

… [error message]

Could not roll back changes

in … [error message]

Could not close …

[error message]

Consult the database vendor's
manual about the cause of the error.

Eliminate the cause of the error.

Could not determine product

vendor for … [error message]

The database vendor could not be
determined or is unsupported.

Explicitly set the database vendor.

Could not determine catalog

for … [error message]

No meaningful catalog could be
determined.

Explicitly set the catalog to use.

Errors

30

Error Cause Solution

Could not determine schema

for … [error message]

No meaningful schema could be
determined.

Explicitly set the schema to use.

Could not drop schema …

[error message]

The target schema could not be
dropped.

Make sure the user has sufficient
privileges to drop a schema.

Could not test character set

in … [error message]

MIGRATE temporarily creates a
table with some string fields to
check how the JDBC driver reports
character sizes. An error occurred
while trying to create this table.

Make sure no table with the name
kkax_migr_chartest previously
exists in the database.

Target table … does not

exist

Source table … does not

exist

Target translation table …

does not exist

Join table … does not exist

Extra table … does not exist

Tables which were expected to exist
for terminology checking could not
be found.

Terminology checking will only
be successful on databases with
an ADEMPIERE-style Application
Dictionary.

Could not set savepoint …

[error message]

Could not get savepoint name

[error message]

Could not rollback to

savepoint … [error message]

Could not release savepoint

… [error message]

Could not prepare statement

… [error message]

Could not reset prepared

statement … [error message]

Could not close prepared

statement … [error message]

Could not count parameters

for prepared statement …

[error message]

Could not set parameter

… of prepared statement …

[error message]

Could not create statement

[error message]

Could not close statement

[error message]

Could not execute

prepared statement query …

[error message]

Could not execute sql query

… [error message]

Could not close resultset …

[error message]

Consult the database vendor's
manual about the cause of the error.

Eliminate the cause of the error.

Start the Application Server

31

Error Cause Solution

Could not move cursor in

result set … [error message]

Could not read column … from

result set … [error message]

Could not check last column

value from result set …

[error message]

Could not execute prepared

statement command …

[error message]

Could not execute sql

command … [error message]

unknown data type … No unambiguous data type ID exists
for the data type

File a bug report.

unknown data type or extra

logic required for data type

ID …

The unambiguous data type ID
could not be converted to a vendor-
specific data type

File a bug report.

Instantiation Exception for

class … [error message]

Illegal Access Exception for

class … [error message]

Could not find interface …

[error message]

A JAVA interface could not be
instantiated.

File a bug report.

A database can not

be migrated to itself

(source and target must be

different)

Source and target connection
parameters must point to different
databases.

Make sure source and target
connection parameters are correct.

Source and target need to

be same database vendor for

upgrades

Upgrades can only be run if source
and target are the same database
vendor.

Choose the correct reference
database or run a transfer migration.

Start the Application Server
Now that your database has been successfully migrated, all errors have been fixed, and all warn-
ings have been taken care of, the application server may be started again.

Users are welcome to log in.

32

Migrate User Manual

33

4
Compiling and Extending

Compiling MIGRATE

Normally there should be no need to compile MIGRATE, as it will be installed together with
ADEMPIERE.

However, there may be situations when you separately want to compile MIGRATE, either to
modify the code to suit your personal needs, or to fix bugs or extend the code and hopefully
contribute your enhancements to the ADEMPIERE project.

Requirements

MIGRATE requires the JAVA DEVELOPMENT KIT version 1.6 (JDK 6)1 and therefore also at least
version 3.5.3a of ADEMPIERE.

Downloading and Compiling the Source Code

1. Download the ADEMPIERE source.

hg clone http://adempiere.hg.sourceforge.net/hgroot/adempiere/adempiere#development .

2. You can either compile the complete ADEMPIERE project or only the MIGRATE sub-project.

• To compile the complete ADEMPIERE project, change to directory utils_dev.

cd utils_dev

• To compile only the MIGRATE sub-project, change to directory migrate.

cd migrate

3. Then execute RUN_build.sh (or RUN_build.bat).

./RUN_build.sh
1There is actually only one reason for this limitation: Some JDBC drivers do not return a readable SQL statement but only an object reference
when the toString() method is called on a prepared statement, rendering it useless for logging purposes. Therefore MIGRATE uses a wrapper
around the PreparedStatement class, which overrides the toString() method and returns a human readable string to be used for logging. All other
methods are caught to extract variable information which is used to generate the string, and then passed on to the original PreparedStatement
class. In JAVA 1.6, some new methods were added to PreparedStatement, which also accept or return classes new to JAVA 1.6. Since JAVA does
not allow conditional compiling, a choice had to be made whether to be compatible with version 1.5 or version 1.6. Naturally, a choice was
made for the newer version.

Building and Running MIGRATE in ECLIPSE

34

4. The resulting JAR file (migrate.jar) will be created in the migrate project directory and
also copied to the ../lib directory.

5. This will also generate the API and user documentation, to be found in the migrate/api
doc and migrate/userdoc directories, respectively.

For details on how to work with ADEMPIERE source code, consult the ADEMPIERE documentation
[http://www.adempiere.com/index.php/Compile].

Building and Running MIGRATE in ECLIPSE

Consult the ADEMPIERE documentation [http://www.adempiere.com/index.php/Create_your_A
Dempiere_development_environment] on how to compile and run ADEMPIERE from within
ECLIPSE.

Note that the JDBC drivers for installed databases must be in the classpath.

If you have installed ADEMPIERE, they can be found in $ADEMPIERE_HOME/lib:

• $ADEMPIERE_HOME/lib/oracle.jar for ORACLE

• $ADEMPIERE_HOME/lib/postgresql.jar for POSTGRESQL

Otherwise they can be found in subdirectories of your local database installation, for example

• $ORACLE_HOME/jdbc/lib/ojdbc14.jar for ORACLE

• /usr/share/java/postgresql-jdbc.jar for POSTGRESQL

To add files or directories to the classpath in ECLIPSE (version 3.4.1), in the Run menu select
Run Configurations…, select the Classpath tab and click the Add External JARs… button.

Figure 4.1. JDBC drivers must be set in the classpath for MIGRATE to run in ECLIPSE

http://www.adempiere.com/index.php/Compile
http://www.adempiere.com/index.php/Compile
http://www.adempiere.com/index.php/Create_your_ADempiere_development_environment
http://www.adempiere.com/index.php/Create_your_ADempiere_development_environment
http://www.adempiere.com/index.php/Create_your_ADempiere_development_environment

Extending MIGRATE

35

Extending MIGRATE

Source Files

Being open-source, MIGRATE has the advantage that you can modify the source code to fit your
particular needs.

More than that, MIGRATE is designed to be easily extendable for localization and for handling
additional database vendors, and you are invited to help and contribute your solutions to ADEM-

PIERE.

To help you navigate the source files, they are listed here by category:

Table 4.1. Source Files

Category Source Files

Main class Migrate.java

Parameters and constants Parameters.java

Graphical User Interface Gui.java

HelpAbout.java

HelpInfo.java

images/*

Logging MigrateLogger.java

MigrateLogger_Formatter.java

MigrateLogger_Filter.java

PreparedStatementWrapper.java

Localization Messages.java

User Documentation manual.xml

images/doc_

JDBC connection to database DBConnection.java

Vendor-specific SQL-generation and database rules
and conventions

DBEngine.java

DBEngineInterface.java

DBEngine_Oracle.java

DBEngine_Postgresql.java

Database objects DBObject.java

DBObjectInterface.java

DBObjectDefinition.java

DBObject_Table.java

DBObject_Table_Column.java

DBObject_PrimaryKey.java

DBObject_PrimaryKey_Table.java

DBObject_PrimaryKey_Column.java

DBObject_ForeignKey.java

DBObject_ForeignKey_Table.java

DBObject_ForeignKey_Column.java

DBObject_Check.java

DBObject_Check_Table.java

Adding Languages and Locales

36

Category Source Files

DBObject_Check_Rule.java

DBObject_Unique.java

DBObject_Unique_Table.java

DBObject_Unique_Column.java

DBObject_Index.java

DBObject_Index_Table.java

DBObject_Index_Column.java

DBObject_View.java

DBObject_View_Definition.java

DBObject_Sequence.java

DBObject_Sequence_Counter.java

DBObject_Function.java

DBObject_Function_Argument.java

DBObject_Function_Body.java

DBObject_Operator.java

DBObject_Operator_Signature.java

DBObject_Operator_Definition.java

DBObject_Trigger.java

DBObject_Trigger_Table.java

DBObject_Trigger_Definition.java

Application Dictionary Objects ADObject_TreeNode.java

Adding Languages and Locales

All messages are contained in the resource file Messages.java, which contains US-English
text as default locale.

To add additional languages or locales, copy Messages.java to a new file following JAVA's Re-
source Bundle [http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles/] nam-
ing convention.

For example, to create a French resource file, name it Messages_fr.java.

To differentiate between French as spoken in France and French as spoken in Canada, create
two resource files named Messages_fr_FR.java and Messages_fr_CA.java.

Of course the class declaration must be changed to match the file name, for example pub-
lic class Messages extends ListResourceBundle { … would become public class
Messages_fr_FR extends ListResourceBundle { ….

The file contains an array of {“key”, “localized String”} pairs. The keys should not be
modified, as they are used to look up the localized string by the Resource Bundle. The localized
string should be translated to the required language.

http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles/
http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles/
http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles/

Adding Database Vendors

37

Note that while Resource Bundles generally accept {“key”, Object} pairs, MIGRATE can only
handle String values such as in {“key”, “String”} pairs2.

Adding Database Vendors
To be able to communicate with different database vendors and follow their conventions and
rules, MIGRATE uses a layer of “database engines” which answer to specific predefined requests
and provide vendor-specific SQL statements.

These database engines are implemented as JAVA Interfaces and can therefore easily be extended
to other database vendors. In this case, “easily” just means that interfaces for additional database
vendors can easily be added, but the actual programming and debugging of such interfaces will
still be a laborious task.

The interface definition, manifested in source file DBEngineInterface.java, defines which
functions a vendor-specific database engine must contain, what arguments those functions will
be given, and what MIGRATE expects as return values. Consult the DBEngineInterface API [../
apidoc/com/kkalice/adempiere/migrate/DBEngineInterface.html] for details (it is generated by
javadoc during compilation).

Two database engines are included with the original distribution of MIGRATE: one for ORACLE

and one for POSTGRESQL.

To add a new database engine, it is probably easiest to make a copy of the file which most closely
matches the vendor you want to implement, name it according to the new vendor (for example,
DBEngine_MySql.java, or DBEngine_AdabasD.java), and rename the class declaration inside
the file (public class DBEngine_MySql implements DBEngine_Interface {…, or public
class DBEngine_AdabasD implements DBEngine_Interface {…).

Then go through the methods step by step, compare the difference between
DBEngine_Oracle.java and DBEngine_Postgresql.java, and figure out what your
database vendor requires. After you are done programming the interface, extensive testing and
debugging will follow.

To Do
The following are some features which would be nice for MIGRATE to have, but which have not
been implemented yet.

The community is invited to submit contributions:

Identify Renamed Tables

In: Migrate.synchronizeTables()

2For this reason, to translate keyboard codes for mnemonic highlighting of menu items, labels, or buttons, the keyboard code, which is an int,
is converted to an Integer which is converted to a String, as in:

 …
 {"guiMenuHelp", "Help"},
 {"guiMenuHelpMnemonic", new Integer(KeyEvent.VK_H).toString()},
 …

../apidoc/com/kkalice/adempiere/migrate/DBEngineInterface.html
../apidoc/com/kkalice/adempiere/migrate/DBEngineInterface.html
../apidoc/com/kkalice/adempiere/migrate/DBEngineInterface.html

To Do

38

MIGRATE drops tables not existing in the reference database and adds tables not existing in the
target. So if a table has been renamed, the data contained in that table will be lost. It is therefore
necessary to identify tables which have been renamed.

The obvious solution would be to check the AD_Element_ID of the table's primary key, but that
method will fail:

In the past, when C_Allocation was renamed to C_AllocationLine, the primary key C_Allocation_ID (ele-
ment 1380) became C_AllocationHdr_ID, and a new primary key C_AllocationLine_ID (element 2534) was
created for the renamed table.

A different solution must be found.

Preserve Parent Links

In: Migrate.preserveParentLinks()

If a table in the live database does not contain a column existing in the reference database, that
column will be created with a default value. But if the new column is used as part of a foreign
key constraint in the reference database, the default value will not reference any parent record
in the target database, which will result in an error when the foreign key is created.

Such "unlinked" fields should be linked to the correct parent, and it must be deduced from other
data in the table what the correct parent is.

Currently the hints how to find the correct parent are hard-coded.

At some time, a C_Dunning_ID column was added to the C_DunningRun table, which was used as a foreign key to
C_Dunning. When running an upgrade migration, the column is added and filled with 0 as default value. But 0 does
not point to any parent in the C_Dunning table, and would thus result in an error when the foreign key is created.

It turns out that C_DunningRun contains a column called C_DunningLevel_ID, which links to the table
C_DunningLevel. And C_DunningLevel has a link to the C_Dunning Table. So the correct target for the
new C_Dunning_ID column can be deduced by following the link to C_DunningLevel_ID and from there to
C_Dunning.

This hint is currently hard-coded.

MIGRATE should be able to find out by itself how to deduce the correct parent.

As long as that can not be done, such hints must continue to be hard-coded as additional situa-
tions of this type are encountered.

Populate New Parents

In: Migrate.populateNewParents()

If new tables exist in the reference database but not in the target, they might be parent tables
which must be filled with data from already existing child records.

Originally there was only a table C_Allocation. At some point, that table was renamed C_AllocationLine, and
a new parent table C_AllocationHdr was introduced.

To Do

39

At that time, C_AllocationHdr_ID had to be set to the value of C_AllocationLine_ID, and columns
in C_AllocationHdr that also existed in C_AllocationLine had to be filled with the values from
C_AllocationLine, using

INSERT INTO … SELECT …;

The link from the child to the new parent record had to be set, and since the parent record's C_AllocationHdr_ID
now had the same value as the child's C_AllocationLine_ID, it could easily be done with:

UPDATE C_AllocationLine SET C_AllocationHdr_ID = C_AllocationLine_ID WHERE

C_AllocationHdr_ID IS NULL;

Finally, any references from other tables pointing to the old child table had to be re-directed to point to the new
parent table, for example

UPDATE Fact_Acct SET AD_Table_ID=735 WHERE AD_Table_ID=390;

(C_AllocationHdr has AD_Table_ID 735, C_AllocationLine has AD_Table_ID 390)

Above is actually not so difficult to implement, but the problem is how to find the primary child
table.

For example, if C_InvoiceLine and C_InvoiceTax exist, and a new table C_Invoice is cre-
ated, how do we know that C_InvoiceLine is the table from which C_Invoice should be pop-
ulated, not C_InvoiceTax?

Another problem arises from inconsistent table naming:

C_Invoice - C_InvoiceLine (the short name is the parent, the long name is the child)
C_AllocationHdr - C_AllocationLine (both parent and child names are long)
GL_JournalBatch - GL_Journal - GL_JournalLine (the parent has a long name, the child has
a short name, and the grandchild has a long name again)

Translation of Functions

In: DBEngine_vendor.translateFunctionBodyFull()

MIGRATE can more or less successfully translate views using regular expressions, but the trans-
lation of functions is much more difficult.

Any help to translate functions between the different procedural languages native to each
database vendor would be highly appreciated.

Fail-Safe / Safe-Fail

MIGRATE requires the migration process not to be interrupted.

If it does get interrupted, for example because of a power outage, you need to restore the live
database from your backup and start the migration process again from scratch. That is because
MIGRATE drops views, functions, constraints, indexes etc. before starting the migration process.
If the migration process is interrupted before those objects are recreated, they will be lost forever.

It would be nice if MIGRATE saved the meta-data it gathered and then used that saved meta-data
to resume migrations which were interrupted.

To Do

40

Delete Client / Delete Transactions

The original COMPIERE migration tool had a facility to delete transactions (in effect “resetting”
a client) or to delete a client entirely. It is probably better not to include such functionality in
MIGRATE but rather have a specialized tool for such kind of task.

However, if anybody sees the need to add such functionality to MIGRATE, there already is a
private dropClient() function in the main Migrate class which can be made public and used
for such purpose. (It is currently used to drop the GardenWorld client).

There is no function yet to delete only transactions.

	Migrate
	Table of Contents
	Chapter 1. Introduction
	What is Data Migration?
	History
	Functionality
	Transfer Mode
	Upgrade Mode
	Putting it all Together

	Process Description
	Connect to Databases
	Load Meta-Data
	Structural Migration
	Data Migration
	Cleanup
	Enforce Constraints
	Close Database Connections

	Chapter 2. Marking Customizations
	Registering Custom Entity Types
	Mark Customizations in the Application Dictionary
	Mark Customizations in the Change Log

	Chapter 3. Migrating a Database
	Preperation
	Disconnect all Users
	Create a Backup
	Install new ADEMPIERE version
	Import Reference Database
	Verify Preconditions

	Running the Migration Tool
	The User Interface
	Migration Mode
	Options
	Parameters
	Command Buttons
	Status
	View Buttons
	Close Buttons

	Starting from the Command Line

	Post-Migration Tasks
	Warnings
	Errors
	Start the Application Server

	Chapter 4. Compiling and Extending
	Compiling MIGRATE
	Requirements
	Downloading and Compiling the Source Code
	Building and Running MIGRATE in ECLIPSE

	Extending MIGRATE
	Source Files
	Adding Languages and Locales
	Adding Database Vendors
	To Do
	Identify Renamed Tables
	Preserve Parent Links
	Populate New Parents
	Translation of Functions
	Fail-Safe / Safe-Fail
	Delete Client / Delete Transactions

